You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
362 lines
13 KiB
362 lines
13 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from . import ObjectiveValueComponent, PrimalSolutionComponent, LazyConstraintsComponent
|
|
import pyomo.environ as pe
|
|
from pyomo.core import Var
|
|
from copy import deepcopy
|
|
import pickle
|
|
from scipy.stats import randint
|
|
from p_tqdm import p_map
|
|
import numpy as np
|
|
import logging
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
# Global memory for multiprocessing
|
|
SOLVER = [None]
|
|
INSTANCES = [None]
|
|
|
|
|
|
def _parallel_solve(instance_idx):
|
|
solver = deepcopy(SOLVER[0])
|
|
instance = INSTANCES[0][instance_idx]
|
|
results = solver.solve(instance)
|
|
return {
|
|
"Results": results,
|
|
"Solution": instance.solution,
|
|
"LP solution": instance.lp_solution,
|
|
"LP value": instance.lp_value,
|
|
"Upper bound": instance.upper_bound,
|
|
"Lower bound": instance.lower_bound,
|
|
"Violations": instance.found_violations,
|
|
}
|
|
|
|
|
|
class InternalSolver:
|
|
def __init__(self):
|
|
self.is_warm_start_available = False
|
|
self.model = None
|
|
self.var_name_to_var = {}
|
|
|
|
def solve_lp(self, tee=False):
|
|
self.solver.set_instance(self.model)
|
|
|
|
# Relax domain
|
|
from pyomo.core.base.set_types import Reals, Binary
|
|
original_domains = []
|
|
for (idx, var) in enumerate(self.model.component_data_objects(Var)):
|
|
original_domains += [var.domain]
|
|
lb, ub = var.bounds
|
|
if var.domain == Binary:
|
|
var.domain = Reals
|
|
var.setlb(lb)
|
|
var.setub(ub)
|
|
self.solver.update_var(var)
|
|
|
|
# Solve LP relaxation
|
|
results = self.solver.solve(tee=tee)
|
|
|
|
# Restore domains
|
|
for (idx, var) in enumerate(self.model.component_data_objects(Var)):
|
|
if original_domains[idx] == Binary:
|
|
var.domain = original_domains[idx]
|
|
self.solver.update_var(var)
|
|
|
|
return {
|
|
"Optimal value": results["Problem"][0]["Lower bound"],
|
|
}
|
|
|
|
def clear_values(self):
|
|
for var in self.model.component_objects(Var):
|
|
for index in var:
|
|
if var[index].fixed:
|
|
continue
|
|
var[index].value = None
|
|
|
|
def get_solution(self):
|
|
solution = {}
|
|
for var in self.model.component_objects(Var):
|
|
solution[str(var)] = {}
|
|
for index in var:
|
|
solution[str(var)][index] = var[index].value
|
|
return solution
|
|
|
|
def set_warm_start(self, solution):
|
|
self.is_warm_start_available = True
|
|
self.clear_values()
|
|
count_total, count_fixed = 0, 0
|
|
for var_name in solution:
|
|
var = self.var_name_to_var[var_name]
|
|
for index in solution[var_name]:
|
|
count_total += 1
|
|
var[index].value = solution[var_name][index]
|
|
if solution[var_name][index] is not None:
|
|
count_fixed += 1
|
|
logger.info("Setting start values for %d variables (out of %d)" %
|
|
(count_fixed, count_total))
|
|
|
|
def set_model(self, model):
|
|
from pyomo.core.kernel.objective import minimize, maximize
|
|
self.model = model
|
|
self.solver.set_instance(model)
|
|
if self.solver._objective.sense == minimize:
|
|
self.sense = "min"
|
|
else:
|
|
self.sense = "max"
|
|
self.var_name_to_var = {}
|
|
self.all_vars = []
|
|
for var in model.component_objects(Var):
|
|
self.var_name_to_var[var.name] = var
|
|
self.all_vars += [var[idx] for idx in var]
|
|
|
|
def set_instance(self, instance):
|
|
self.instance = instance
|
|
|
|
def fix(self, solution):
|
|
count_total, count_fixed = 0, 0
|
|
for var_name in solution:
|
|
for index in solution[var_name]:
|
|
var = self.var_name_to_var[var_name]
|
|
count_total += 1
|
|
if solution[var_name][index] is None:
|
|
continue
|
|
count_fixed += 1
|
|
var[index].fix(solution[var_name][index])
|
|
self.solver.update_var(var[index])
|
|
logger.info("Fixing values for %d variables (out of %d)" %
|
|
(count_fixed, count_total))
|
|
|
|
def add_constraint(self, cut):
|
|
self.solver.add_constraint(cut)
|
|
|
|
def solve(self, tee=False):
|
|
total_wallclock_time = 0
|
|
self.instance.found_violations = []
|
|
while True:
|
|
logger.debug("Solving MIP...")
|
|
results = self.solver.solve(tee=tee)
|
|
total_wallclock_time += results["Solver"][0]["Wallclock time"]
|
|
if not hasattr(self.instance, "find_violations"):
|
|
break
|
|
logger.debug("Finding violated constraints...")
|
|
violations = self.instance.find_violations(self.model)
|
|
if len(violations) == 0:
|
|
break
|
|
self.instance.found_violations += violations
|
|
logger.debug(" %d violations found" % len(violations))
|
|
for v in violations:
|
|
cut = self.instance.build_lazy_constraint(self.model, v)
|
|
self.add_constraint(cut)
|
|
|
|
return {
|
|
"Lower bound": results["Problem"][0]["Lower bound"],
|
|
"Upper bound": results["Problem"][0]["Upper bound"],
|
|
"Wallclock time": total_wallclock_time,
|
|
"Nodes": 1,
|
|
"Sense": self.sense,
|
|
}
|
|
|
|
|
|
class GurobiSolver(InternalSolver):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.solver = pe.SolverFactory('gurobi_persistent')
|
|
self.solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
|
|
|
def set_threads(self, threads):
|
|
self.solver.options["Threads"] = threads
|
|
|
|
def set_time_limit(self, time_limit):
|
|
self.solver.options["TimeLimit"] = time_limit
|
|
|
|
def set_gap_tolerance(self, gap_tolerance):
|
|
self.solver.options["MIPGap"] = gap_tolerance
|
|
|
|
def solve(self, tee=False):
|
|
from gurobipy import GRB
|
|
def cb(cb_model, cb_opt, cb_where):
|
|
if cb_where == GRB.Callback.MIPSOL:
|
|
cb_opt.cbGetSolution(self.all_vars)
|
|
logger.debug("Finding violated constraints...")
|
|
violations = self.instance.find_violations(cb_model)
|
|
self.instance.found_violations += violations
|
|
logger.debug(" %d violations found" % len(violations))
|
|
for v in violations:
|
|
cut = self.instance.build_lazy_constraint(cb_model, v)
|
|
cb_opt.cbLazy(cut)
|
|
if hasattr(self.instance, "find_violations"):
|
|
self.solver.options["LazyConstraints"] = 1
|
|
self.solver.set_callback(cb)
|
|
self.instance.found_violations = []
|
|
results = self.solver.solve(tee=tee, warmstart=self.is_warm_start_available)
|
|
self.solver.set_callback(None)
|
|
return {
|
|
"Lower bound": results["Problem"][0]["Lower bound"],
|
|
"Upper bound": results["Problem"][0]["Upper bound"],
|
|
"Wallclock time": results["Solver"][0]["Wallclock time"],
|
|
"Nodes": self.solver._solver_model.getAttr("NodeCount"),
|
|
"Sense": self.sense,
|
|
}
|
|
|
|
|
|
class CPLEXSolver(InternalSolver):
|
|
def __init__(self):
|
|
super().__init__()
|
|
import cplex
|
|
self.solver = pe.SolverFactory('cplex_persistent')
|
|
self.solver.options["randomseed"] = randint(low=0, high=1000).rvs()
|
|
|
|
def set_threads(self, threads):
|
|
self.solver.options["threads"] = threads
|
|
|
|
def set_time_limit(self, time_limit):
|
|
self.solver.options["timelimit"] = time_limit
|
|
|
|
def set_gap_tolerance(self, gap_tolerance):
|
|
self.solver.options["mip_tolerances_mipgap"] = gap_tolerance
|
|
|
|
def solve_lp(self, tee=False):
|
|
import cplex
|
|
lp = self.solver._solver_model
|
|
var_types = lp.variables.get_types()
|
|
n_vars = len(var_types)
|
|
lp.set_problem_type(cplex.Cplex.problem_type.LP)
|
|
results = self.solver.solve(tee=tee)
|
|
lp.variables.set_types(zip(range(n_vars), var_types))
|
|
return {
|
|
"Optimal value": results["Problem"][0]["Lower bound"],
|
|
}
|
|
|
|
|
|
class LearningSolver:
|
|
"""
|
|
Mixed-Integer Linear Programming (MIP) solver that extracts information from previous runs,
|
|
using Machine Learning methods, to accelerate the solution of new (yet unseen) instances.
|
|
"""
|
|
|
|
def __init__(self,
|
|
components=None,
|
|
gap_tolerance=None,
|
|
mode="exact",
|
|
solver="gurobi",
|
|
threads=4,
|
|
time_limit=None,
|
|
):
|
|
|
|
self.is_persistent = None
|
|
self.components = components
|
|
self.mode = mode
|
|
self.internal_solver = None
|
|
self.internal_solver_factory = solver
|
|
self.threads = threads
|
|
self.time_limit = time_limit
|
|
self.gap_tolerance = gap_tolerance
|
|
self.tee = False
|
|
self.training_instances = []
|
|
|
|
if self.components is not None:
|
|
assert isinstance(self.components, dict)
|
|
else:
|
|
self.components = {
|
|
"ObjectiveValue": ObjectiveValueComponent(),
|
|
"PrimalSolution": PrimalSolutionComponent(),
|
|
"LazyConstraints": LazyConstraintsComponent(),
|
|
}
|
|
|
|
assert self.mode in ["exact", "heuristic"]
|
|
for component in self.components.values():
|
|
component.mode = self.mode
|
|
|
|
def _create_internal_solver(self):
|
|
logger.debug("Initializing %s" % self.internal_solver_factory)
|
|
if self.internal_solver_factory == "cplex":
|
|
solver = CPLEXSolver()
|
|
elif self.internal_solver_factory == "gurobi":
|
|
solver = GurobiSolver()
|
|
else:
|
|
raise Exception("solver %s not supported" % solver_factory)
|
|
solver.set_threads(self.threads)
|
|
if self.time_limit is not None:
|
|
solver.set_time_limit(self.time_limit)
|
|
if self.gap_tolerance is not None:
|
|
solver.set_gap_tolerance(self.gap_tolerance)
|
|
return solver
|
|
|
|
def solve(self,
|
|
instance,
|
|
model=None,
|
|
tee=False,
|
|
relaxation_only=False,
|
|
):
|
|
if model is None:
|
|
model = instance.to_model()
|
|
|
|
self.tee = tee
|
|
self.internal_solver = self._create_internal_solver()
|
|
self.internal_solver.set_model(model)
|
|
self.internal_solver.set_instance(instance)
|
|
|
|
logger.debug("Solving LP relaxation...")
|
|
results = self.internal_solver.solve_lp(tee=tee)
|
|
instance.lp_solution = self.internal_solver.get_solution()
|
|
instance.lp_value = results["Optimal value"]
|
|
|
|
logger.debug("Running before_solve callbacks...")
|
|
for component in self.components.values():
|
|
component.before_solve(self, instance, model)
|
|
|
|
if relaxation_only:
|
|
return results
|
|
|
|
results = self.internal_solver.solve(tee=tee)
|
|
|
|
# Read MIP solution and bounds
|
|
instance.lower_bound = results["Lower bound"]
|
|
instance.upper_bound = results["Upper bound"]
|
|
instance.solution = self.internal_solver.get_solution()
|
|
|
|
logger.debug("Calling after_solve callbacks...")
|
|
for component in self.components.values():
|
|
component.after_solve(self, instance, model, results)
|
|
|
|
# Store instance for future training
|
|
self.training_instances += [instance]
|
|
|
|
return results
|
|
|
|
def parallel_solve(self,
|
|
instances,
|
|
n_jobs=4,
|
|
label="Solve",
|
|
collect_training_data=True,
|
|
):
|
|
|
|
self.internal_solver = None
|
|
SOLVER[0] = self
|
|
INSTANCES[0] = instances
|
|
p_map_results = p_map(_parallel_solve,
|
|
list(range(len(instances))),
|
|
num_cpus=n_jobs,
|
|
desc=label)
|
|
|
|
results = [p["Results"] for p in p_map_results]
|
|
for (idx, r) in enumerate(p_map_results):
|
|
instances[idx].solution = r["Solution"]
|
|
instances[idx].lp_solution = r["LP solution"]
|
|
instances[idx].lp_value = r["LP value"]
|
|
instances[idx].lower_bound = r["Lower bound"]
|
|
instances[idx].upper_bound = r["Upper bound"]
|
|
instances[idx].found_violations = r["Violations"]
|
|
|
|
return results
|
|
|
|
def fit(self, training_instances=None):
|
|
if training_instances is None:
|
|
training_instances = self.training_instances
|
|
if len(training_instances) == 0:
|
|
return
|
|
for component in self.components.values():
|
|
component.fit(training_instances)
|