You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
6.3 KiB
189 lines
6.3 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
from io import StringIO
|
|
from warnings import warn
|
|
|
|
import pyomo.environ as pe
|
|
|
|
from miplearn.solvers import _RedirectOutput
|
|
from miplearn.solvers.gurobi import GurobiSolver
|
|
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
|
from . import (
|
|
_get_knapsack_instance,
|
|
get_internal_solvers,
|
|
)
|
|
from ..fixtures.infeasible import get_infeasible_instance
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def test_redirect_output():
|
|
import sys
|
|
|
|
original_stdout = sys.stdout
|
|
io = StringIO()
|
|
with _RedirectOutput([io]):
|
|
print("Hello world")
|
|
assert sys.stdout == original_stdout
|
|
assert io.getvalue() == "Hello world\n"
|
|
|
|
|
|
def test_internal_solver_warm_starts():
|
|
for solver in get_internal_solvers():
|
|
logger.info("Solver: %s" % solver)
|
|
instance = _get_knapsack_instance(solver)
|
|
model = instance.to_model()
|
|
solver.set_instance(instance, model)
|
|
solver.set_warm_start({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
|
|
stats = solver.solve(tee=True)
|
|
if stats["Warm start value"] is not None:
|
|
assert stats["Warm start value"] == 725.0
|
|
else:
|
|
warn(f"{solver.__class__.__name__} should set warm start value")
|
|
|
|
solver.set_warm_start({"x[0]": 1.0, "x[1]": 1.0, "x[2]": 1.0, "x[3]": 1.0})
|
|
stats = solver.solve(tee=True)
|
|
assert stats["Warm start value"] is None
|
|
|
|
solver.fix({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
|
|
stats = solver.solve(tee=True)
|
|
assert stats["Lower bound"] == 725.0
|
|
assert stats["Upper bound"] == 725.0
|
|
|
|
|
|
def test_internal_solver():
|
|
for solver in get_internal_solvers():
|
|
logger.info("Solver: %s" % solver)
|
|
|
|
instance = _get_knapsack_instance(solver)
|
|
model = instance.to_model()
|
|
solver.set_instance(instance, model)
|
|
|
|
assert solver.get_variable_names() == ["x[0]", "x[1]", "x[2]", "x[3]"]
|
|
|
|
stats = solver.solve_lp()
|
|
assert not solver.is_infeasible()
|
|
assert round(stats["LP value"], 3) == 1287.923
|
|
assert len(stats["LP log"]) > 100
|
|
|
|
solution = solver.get_solution()
|
|
assert round(solution["x[0]"], 3) == 1.000
|
|
assert round(solution["x[1]"], 3) == 0.923
|
|
assert round(solution["x[2]"], 3) == 1.000
|
|
assert round(solution["x[3]"], 3) == 0.000
|
|
|
|
stats = solver.solve(tee=True)
|
|
assert not solver.is_infeasible()
|
|
assert len(stats["MIP log"]) > 100
|
|
assert stats["Lower bound"] == 1183.0
|
|
assert stats["Upper bound"] == 1183.0
|
|
assert stats["Sense"] == "max"
|
|
assert isinstance(stats["Wallclock time"], float)
|
|
|
|
solution = solver.get_solution()
|
|
assert solution["x[0]"] == 1.0
|
|
assert solution["x[1]"] == 0.0
|
|
assert solution["x[2]"] == 1.0
|
|
assert solution["x[3]"] == 1.0
|
|
|
|
# Add a brand new constraint
|
|
if isinstance(solver, BasePyomoSolver):
|
|
model.cut = pe.Constraint(expr=model.x[0] <= 0.0, name="cut")
|
|
solver.add_constraint(model.cut)
|
|
elif isinstance(solver, GurobiSolver):
|
|
x = model.getVarByName("x[0]")
|
|
solver.add_constraint(x <= 0.0, name="cut")
|
|
else:
|
|
raise Exception("Illegal state")
|
|
|
|
# New constraint should affect solution and should be listed in
|
|
# constraint ids
|
|
assert solver.get_constraint_ids() == ["eq_capacity", "cut"]
|
|
stats = solver.solve()
|
|
assert stats["Lower bound"] == 1030.0
|
|
|
|
assert solver.get_sense() == "max"
|
|
assert solver.get_constraint_sense("cut") == "<"
|
|
assert solver.get_constraint_sense("eq_capacity") == "<"
|
|
|
|
# Verify slacks
|
|
assert solver.get_inequality_slacks() == {
|
|
"cut": 0.0,
|
|
"eq_capacity": 3.0,
|
|
}
|
|
|
|
if isinstance(solver, GurobiSolver):
|
|
# Extract the new constraint
|
|
cobj = solver.extract_constraint("cut")
|
|
|
|
# New constraint should no longer affect solution and should no longer
|
|
# be listed in constraint ids
|
|
assert solver.get_constraint_ids() == ["eq_capacity"]
|
|
stats = solver.solve()
|
|
assert stats["Lower bound"] == 1183.0
|
|
|
|
# New constraint should not be satisfied by current solution
|
|
assert not solver.is_constraint_satisfied(cobj)
|
|
|
|
# Re-add constraint
|
|
solver.add_constraint(cobj)
|
|
|
|
# Constraint should affect solution again
|
|
assert solver.get_constraint_ids() == ["eq_capacity", "cut"]
|
|
stats = solver.solve()
|
|
assert stats["Lower bound"] == 1030.0
|
|
|
|
# New constraint should now be satisfied
|
|
assert solver.is_constraint_satisfied(cobj)
|
|
|
|
# Relax problem and make cut into an equality constraint
|
|
solver.relax()
|
|
solver.set_constraint_sense("cut", "=")
|
|
stats = solver.solve()
|
|
assert round(stats["Lower bound"]) == 1030.0
|
|
assert round(solver.get_dual("eq_capacity")) == 0.0
|
|
|
|
|
|
def test_relax():
|
|
for solver in get_internal_solvers():
|
|
instance = _get_knapsack_instance(solver)
|
|
solver.set_instance(instance)
|
|
solver.relax()
|
|
stats = solver.solve()
|
|
assert round(stats["Lower bound"]) == 1288.0
|
|
|
|
|
|
def test_infeasible_instance():
|
|
for solver in get_internal_solvers():
|
|
instance = get_infeasible_instance(solver)
|
|
solver.set_instance(instance)
|
|
stats = solver.solve()
|
|
|
|
assert solver.is_infeasible()
|
|
assert solver.get_solution() is None
|
|
assert stats["Upper bound"] is None
|
|
assert stats["Lower bound"] is None
|
|
|
|
stats = solver.solve_lp()
|
|
assert solver.get_solution() is None
|
|
assert stats["LP value"] is None
|
|
|
|
|
|
def test_iteration_cb():
|
|
for solver in get_internal_solvers():
|
|
logger.info("Solver: %s" % solver)
|
|
instance = _get_knapsack_instance(solver)
|
|
solver.set_instance(instance)
|
|
count = 0
|
|
|
|
def custom_iteration_cb():
|
|
nonlocal count
|
|
count += 1
|
|
return count < 5
|
|
|
|
solver.solve(iteration_cb=custom_iteration_cb)
|
|
assert count == 5
|