You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
5.6 KiB
189 lines
5.6 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from unittest.mock import Mock, call
|
|
|
|
from miplearn import (RelaxationComponent,
|
|
LearningSolver,
|
|
Instance,
|
|
InternalSolver)
|
|
from miplearn.classifiers import Classifier
|
|
|
|
|
|
def test_usage_with_solver():
|
|
solver = Mock(spec=LearningSolver)
|
|
|
|
internal = solver.internal_solver = Mock(spec=InternalSolver)
|
|
internal.get_constraint_ids = Mock(return_value=["c1", "c2", "c3", "c4"])
|
|
internal.get_constraint_slacks = Mock(side_effect=lambda: {
|
|
"c1": 0.5,
|
|
"c2": 0.0,
|
|
"c3": 0.0,
|
|
"c4": 1.4,
|
|
})
|
|
|
|
instance = Mock(spec=Instance)
|
|
instance.get_constraint_features = Mock(side_effect=lambda cid: {
|
|
"c2": [1.0, 0.0],
|
|
"c3": [0.5, 0.5],
|
|
"c4": [1.0],
|
|
}[cid])
|
|
instance.get_constraint_category = Mock(side_effect=lambda cid: {
|
|
"c1": None,
|
|
"c2": "type-a",
|
|
"c3": "type-a",
|
|
"c4": "type-b",
|
|
}[cid])
|
|
|
|
component = RelaxationComponent()
|
|
component.classifiers = {
|
|
"type-a": Mock(spec=Classifier),
|
|
"type-b": Mock(spec=Classifier),
|
|
}
|
|
component.classifiers["type-a"].predict_proba = \
|
|
Mock(return_value=[
|
|
[0.20, 0.80],
|
|
[0.05, 0.95],
|
|
])
|
|
component.classifiers["type-b"].predict_proba = \
|
|
Mock(return_value=[
|
|
[0.02, 0.98],
|
|
])
|
|
|
|
# LearningSolver calls before_solve
|
|
component.before_solve(solver, instance, None)
|
|
|
|
# Should relax integrality of the problem
|
|
internal.relax.assert_called_once()
|
|
|
|
# Should query list of constraints
|
|
internal.get_constraint_ids.assert_called_once()
|
|
|
|
# Should query category and features for each constraint in the model
|
|
assert instance.get_constraint_category.call_count == 4
|
|
instance.get_constraint_category.assert_has_calls([
|
|
call("c1"), call("c2"), call("c3"), call("c4"),
|
|
])
|
|
|
|
# For constraint with non-null categories, should ask for features
|
|
assert instance.get_constraint_features.call_count == 3
|
|
instance.get_constraint_features.assert_has_calls([
|
|
call("c2"), call("c3"), call("c4"),
|
|
])
|
|
|
|
# Should ask ML to predict whether constraint should be removed
|
|
component.classifiers["type-a"].predict_proba.assert_called_once_with([[1.0, 0.0], [0.5, 0.5]])
|
|
component.classifiers["type-b"].predict_proba.assert_called_once_with([[1.0]])
|
|
|
|
# Should ask internal solver to remove constraints predicted as redundant
|
|
assert internal.extract_constraint.call_count == 2
|
|
internal.extract_constraint.assert_has_calls([
|
|
call("c3"), call("c4"),
|
|
])
|
|
|
|
# LearningSolver calls after_solve
|
|
component.after_solve(solver, instance, None, None)
|
|
|
|
# Should query slack for all constraints
|
|
internal.get_constraint_slacks.assert_called_once()
|
|
|
|
# Should store constraint slacks in instance object
|
|
assert hasattr(instance, "slacks")
|
|
assert instance.slacks == {
|
|
"c1": 0.5,
|
|
"c2": 0.0,
|
|
"c3": 0.0,
|
|
"c4": 1.4,
|
|
}
|
|
|
|
|
|
def test_x_y_fit_predict_evaluate():
|
|
instances = [Mock(spec=Instance), Mock(spec=Instance)]
|
|
component = RelaxationComponent(slack_tolerance=0.05,
|
|
threshold=0.80)
|
|
component.classifiers = {
|
|
"type-a": Mock(spec=Classifier),
|
|
"type-b": Mock(spec=Classifier),
|
|
}
|
|
component.classifiers["type-a"].predict_proba = \
|
|
Mock(return_value=[
|
|
[0.20, 0.80],
|
|
])
|
|
component.classifiers["type-b"].predict_proba = \
|
|
Mock(return_value=[
|
|
[0.50, 0.50],
|
|
[0.05, 0.95],
|
|
])
|
|
|
|
# First mock instance
|
|
instances[0].slacks = {
|
|
"c1": 0.00,
|
|
"c2": 0.05,
|
|
"c3": 0.00,
|
|
"c4": 30.0,
|
|
}
|
|
instances[0].get_constraint_category = Mock(side_effect=lambda cid: {
|
|
"c1": None,
|
|
"c2": "type-a",
|
|
"c3": "type-a",
|
|
"c4": "type-b",
|
|
}[cid])
|
|
instances[0].get_constraint_features = Mock(side_effect=lambda cid: {
|
|
"c2": [1.0, 0.0],
|
|
"c3": [0.5, 0.5],
|
|
"c4": [1.0],
|
|
}[cid])
|
|
|
|
# Second mock instance
|
|
instances[1].slacks = {
|
|
"c1": 0.00,
|
|
"c3": 0.30,
|
|
"c4": 0.00,
|
|
"c5": 0.00,
|
|
}
|
|
instances[1].get_constraint_category = Mock(side_effect=lambda cid: {
|
|
"c1": None,
|
|
"c3": "type-a",
|
|
"c4": "type-b",
|
|
"c5": "type-b",
|
|
}[cid])
|
|
instances[1].get_constraint_features = Mock(side_effect=lambda cid: {
|
|
"c3": [0.3, 0.4],
|
|
"c4": [0.7],
|
|
"c5": [0.8],
|
|
}[cid])
|
|
|
|
expected_x = {
|
|
"type-a": [[1.0, 0.0], [0.5, 0.5], [0.3, 0.4]],
|
|
"type-b": [[1.0], [0.7], [0.8]],
|
|
}
|
|
expected_y = {
|
|
"type-a": [[0], [0], [1]],
|
|
"type-b": [[1], [0], [0]]
|
|
}
|
|
|
|
# Should build X and Y matrices correctly
|
|
assert component.x(instances) == expected_x
|
|
assert component.y(instances) == expected_y
|
|
|
|
# Should pass along X and Y matrices to classifiers
|
|
component.fit(instances)
|
|
component.classifiers["type-a"].fit.assert_called_with(expected_x["type-a"], expected_y["type-a"])
|
|
component.classifiers["type-b"].fit.assert_called_with(expected_x["type-b"], expected_y["type-b"])
|
|
|
|
assert component.predict(expected_x) == {
|
|
"type-a": [[1]],
|
|
"type-b": [[0], [1]]
|
|
}
|
|
|
|
ev = component.evaluate(instances[1])
|
|
assert ev["True positive"] == 1
|
|
assert ev["True negative"] == 1
|
|
assert ev["False positive"] == 1
|
|
assert ev["False negative"] == 0
|
|
|
|
|
|
|
|
|