You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
115 lines
4.2 KiB
115 lines
4.2 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
from copy import deepcopy
|
|
|
|
import numpy as np
|
|
from sklearn.linear_model import LinearRegression
|
|
from sklearn.metrics import (
|
|
mean_squared_error,
|
|
explained_variance_score,
|
|
max_error,
|
|
mean_absolute_error,
|
|
r2_score,
|
|
)
|
|
|
|
from miplearn.classifiers import Regressor
|
|
from miplearn.components.component import Component
|
|
from miplearn.extractors import InstanceFeaturesExtractor, ObjectiveValueExtractor
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ObjectiveValueComponent(Component):
|
|
"""
|
|
A Component which predicts the optimal objective value of the problem.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
regressor: Regressor = LinearRegression(),
|
|
) -> None:
|
|
self.ub_regressor = None
|
|
self.lb_regressor = None
|
|
self.regressor_prototype = regressor
|
|
|
|
def before_solve(self, solver, instance, model):
|
|
if self.ub_regressor is not None:
|
|
logger.info("Predicting optimal value...")
|
|
lb, ub = self.predict([instance])[0]
|
|
instance.predicted_ub = ub
|
|
instance.predicted_lb = lb
|
|
logger.info("Predicted values: lb=%.2f, ub=%.2f" % (lb, ub))
|
|
|
|
def after_solve(
|
|
self,
|
|
solver,
|
|
instance,
|
|
model,
|
|
stats,
|
|
training_data,
|
|
):
|
|
if self.ub_regressor is not None:
|
|
stats["Predicted UB"] = instance.predicted_ub
|
|
stats["Predicted LB"] = instance.predicted_lb
|
|
else:
|
|
stats["Predicted UB"] = None
|
|
stats["Predicted LB"] = None
|
|
|
|
def fit(self, training_instances):
|
|
logger.debug("Extracting features...")
|
|
features = InstanceFeaturesExtractor().extract(training_instances)
|
|
ub = ObjectiveValueExtractor(kind="upper bound").extract(training_instances)
|
|
lb = ObjectiveValueExtractor(kind="lower bound").extract(training_instances)
|
|
assert ub.shape == (len(training_instances), 1)
|
|
assert lb.shape == (len(training_instances), 1)
|
|
self.ub_regressor = deepcopy(self.regressor_prototype)
|
|
self.lb_regressor = deepcopy(self.regressor_prototype)
|
|
logger.debug("Fitting ub_regressor...")
|
|
self.ub_regressor.fit(features, ub.ravel())
|
|
logger.debug("Fitting ub_regressor...")
|
|
self.lb_regressor.fit(features, lb.ravel())
|
|
|
|
def predict(self, instances):
|
|
features = InstanceFeaturesExtractor().extract(instances)
|
|
lb = self.lb_regressor.predict(features)
|
|
ub = self.ub_regressor.predict(features)
|
|
assert lb.shape == (len(instances),)
|
|
assert ub.shape == (len(instances),)
|
|
return np.array([lb, ub]).T
|
|
|
|
def evaluate(self, instances):
|
|
y_pred = self.predict(instances)
|
|
y_true = np.array(
|
|
[
|
|
[
|
|
inst.training_data[0]["Lower bound"],
|
|
inst.training_data[0]["Upper bound"],
|
|
]
|
|
for inst in instances
|
|
]
|
|
)
|
|
y_true_lb, y_true_ub = y_true[:, 0], y_true[:, 1]
|
|
y_pred_lb, y_pred_ub = y_pred[:, 1], y_pred[:, 1]
|
|
ev = {
|
|
"Lower bound": {
|
|
"Mean squared error": mean_squared_error(y_true_lb, y_pred_lb),
|
|
"Explained variance": explained_variance_score(y_true_lb, y_pred_lb),
|
|
"Max error": max_error(y_true_lb, y_pred_lb),
|
|
"Mean absolute error": mean_absolute_error(y_true_lb, y_pred_lb),
|
|
"R2": r2_score(y_true_lb, y_pred_lb),
|
|
"Median absolute error": mean_absolute_error(y_true_lb, y_pred_lb),
|
|
},
|
|
"Upper bound": {
|
|
"Mean squared error": mean_squared_error(y_true_ub, y_pred_ub),
|
|
"Explained variance": explained_variance_score(y_true_ub, y_pred_ub),
|
|
"Max error": max_error(y_true_ub, y_pred_ub),
|
|
"Mean absolute error": mean_absolute_error(y_true_ub, y_pred_ub),
|
|
"R2": r2_score(y_true_ub, y_pred_ub),
|
|
"Median absolute error": mean_absolute_error(y_true_ub, y_pred_ub),
|
|
},
|
|
}
|
|
return ev
|