You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/solvers.py

97 lines
3.8 KiB

# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from .transformers import PerVariableTransformer
from .warmstart import LogisticWarmStartPredictor
import pyomo.environ as pe
import numpy as np
from copy import deepcopy
class LearningSolver:
"""
Mixed-Integer Linear Programming (MIP) solver that extracts information from previous runs,
using Machine Learning methods, to accelerate the solution of new (yet unseen) instances.
"""
def __init__(self,
threads=4,
parent_solver=pe.SolverFactory('cbc'),
ws_predictor=LogisticWarmStartPredictor(),
fix_variables=False):
self.parent_solver = parent_solver
self.parent_solver.options["threads"] = threads
self.fix_variables = fix_variables
self.x_train = {}
self.y_train = {}
self.ws_predictors = {}
self.ws_predictor_prototype = ws_predictor
def solve(self, instance, tee=False):
# Convert instance into concrete model
model = instance.to_model()
# Split decision variables according to their category
transformer = PerVariableTransformer()
var_split = transformer.split_variables(instance, model)
# Build x_test and update x_train
x_test = {}
for category in var_split.keys():
var_index_pairs = var_split[category]
x = transformer.transform_instance(instance, var_index_pairs)
x_test[category] = x
if category not in self.x_train.keys():
self.x_train[category] = x
else:
self.x_train[category] = np.vstack([self.x_train[category], x])
# Predict warm start
for category in var_split.keys():
if category in self.ws_predictors.keys():
var_index_pairs = var_split[category]
ws = self.ws_predictors[category].predict(x_test[category])
assert ws.shape == (len(var_index_pairs), 2)
for i in range(len(var_index_pairs)):
var, index = var_index_pairs[i]
if self.fix_variables:
if ws[i,0] == 1:
var[index].fix(0)
elif ws[i,1] == 1:
var[index].fix(1)
else:
if ws[i,0] == 1:
var[index].value = 0
elif ws[i,1] == 1:
var[index].value = 1
# Solve MILP
self._solve(model, tee=tee)
# Update y_train
for category in var_split.keys():
var_index_pairs = var_split[category]
y = transformer.transform_solution(var_index_pairs)
if category not in self.y_train.keys():
self.y_train[category] = y
else:
self.y_train[category] = np.vstack([self.y_train[category], y])
def fit(self, x_train_dict=None, y_train_dict=None):
if x_train_dict is None:
x_train_dict = self.x_train
y_train_dict = self.y_train
for category in x_train_dict.keys():
x_train = x_train_dict[category]
y_train = y_train_dict[category]
self.ws_predictors[category] = deepcopy(self.ws_predictor_prototype)
self.ws_predictors[category].fit(x_train, y_train)
def _solve(self, model, tee=False):
if hasattr(self.parent_solver, "set_instance"):
self.parent_solver.set_instance(model)
self.parent_solver.solve(tee=tee, warmstart=True)
else:
self.parent_solver.solve(model, tee=tee, warmstart=True)