You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/test_stab.py

51 lines
1.7 KiB

# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from .solvers import LearningSolver
from .core import Parameters
import numpy as np
import pyomo.environ as pe
import networkx as nx
class MaxStableSetGenerator:
"""Class that generates random instances of the Maximum Stable Set (MSS) Problem."""
def __init__(self, n_vertices, density=0.1, seed=42):
self.graph = nx.generators.random_graphs.binomial_graph(n_vertices, density, seed)
self.base_weights = np.random.rand(self.graph.number_of_nodes()) * 10
def generate(self):
perturbation = np.random.rand(self.graph.number_of_nodes()) * 0.1
weights = self.base_weights + perturbation
return MaxStableSetParameters(self.graph, weights)
class MaxStableSetParameters(Parameters):
def __init__(self, graph, weights):
self.graph = graph
self.weights = weights
def to_model(self):
nodes = list(self.graph.nodes)
edges = list(self.graph.edges)
model = m = pe.ConcreteModel()
m.x = pe.Var(nodes, domain=pe.Binary)
m.OBJ = pe.Objective(rule=lambda m : sum(m.x[v] * self.weights[v] for v in nodes),
sense=pe.maximize)
m.edge_eqs = pe.ConstraintList()
for edge in edges:
m.edge_eqs.add(m.x[edge[0]] + m.x[edge[1]] <= 1)
return m
def to_array(self):
return self.weights
def test_stab():
generator = MaxStableSetGenerator(n_vertices=100)
for k in range(5):
params = generator.generate()
solver = LearningSolver()
solver.solve(params)