mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 18:38:51 -06:00
181 lines
6.2 KiB
Python
181 lines
6.2 KiB
Python
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import List, Union
|
|
|
|
import gurobipy as gp
|
|
import numpy as np
|
|
import pyomo.environ as pe
|
|
from gurobipy import GRB
|
|
from scipy.stats import uniform, randint
|
|
from scipy.stats.distributions import rv_frozen
|
|
|
|
from miplearn.io import read_pkl_gz
|
|
from miplearn.solvers.gurobi import GurobiModel
|
|
from miplearn.solvers.pyomo import PyomoModel
|
|
|
|
|
|
@dataclass
|
|
class SetCoverData:
|
|
costs: np.ndarray
|
|
incidence_matrix: np.ndarray
|
|
|
|
|
|
class SetCoverGenerator:
|
|
"""Random instance generator for the Set Cover Problem.
|
|
|
|
Generates instances by creating a new random incidence matrix for each
|
|
instance, where the number of elements, sets, density, and costs are sampled
|
|
from user-provided probability distributions.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
n_elements: rv_frozen = randint(low=50, high=51),
|
|
n_sets: rv_frozen = randint(low=100, high=101),
|
|
costs: rv_frozen = uniform(loc=0.0, scale=100.0),
|
|
K: rv_frozen = uniform(loc=25.0, scale=0.0),
|
|
density: rv_frozen = uniform(loc=0.02, scale=0.00),
|
|
):
|
|
"""Initialize the problem generator.
|
|
|
|
Parameters
|
|
----------
|
|
n_elements: rv_discrete
|
|
Probability distribution for number of elements.
|
|
n_sets: rv_discrete
|
|
Probability distribution for number of sets.
|
|
costs: rv_continuous
|
|
Probability distribution for base set costs.
|
|
K: rv_continuous
|
|
Probability distribution for cost scaling factor based on set size.
|
|
density: rv_continuous
|
|
Probability distribution for incidence matrix density.
|
|
"""
|
|
assert isinstance(
|
|
n_elements, rv_frozen
|
|
), "n_elements should be a SciPy probability distribution"
|
|
assert isinstance(
|
|
n_sets, rv_frozen
|
|
), "n_sets should be a SciPy probability distribution"
|
|
assert isinstance(
|
|
costs, rv_frozen
|
|
), "costs should be a SciPy probability distribution"
|
|
assert isinstance(K, rv_frozen), "K should be a SciPy probability distribution"
|
|
assert isinstance(
|
|
density, rv_frozen
|
|
), "density should be a SciPy probability distribution"
|
|
self.n_elements = n_elements
|
|
self.n_sets = n_sets
|
|
self.costs = costs
|
|
self.density = density
|
|
self.K = K
|
|
|
|
def generate(self, n_samples: int) -> List[SetCoverData]:
|
|
def _sample() -> SetCoverData:
|
|
n_sets = self.n_sets.rvs()
|
|
n_elements = self.n_elements.rvs()
|
|
density = self.density.rvs()
|
|
|
|
incidence_matrix = np.random.rand(n_elements, n_sets) < density
|
|
incidence_matrix = incidence_matrix.astype(int)
|
|
|
|
# Ensure each element belongs to at least one set
|
|
for j in range(n_elements):
|
|
if incidence_matrix[j, :].sum() == 0:
|
|
incidence_matrix[j, randint(low=0, high=n_sets).rvs()] = 1
|
|
|
|
# Ensure each set contains at least one element
|
|
for i in range(n_sets):
|
|
if incidence_matrix[:, i].sum() == 0:
|
|
incidence_matrix[randint(low=0, high=n_elements).rvs(), i] = 1
|
|
|
|
costs = self.costs.rvs(n_sets) + self.K.rvs() * incidence_matrix.sum(axis=0)
|
|
return SetCoverData(
|
|
costs=costs.round(2),
|
|
incidence_matrix=incidence_matrix,
|
|
)
|
|
|
|
return [_sample() for _ in range(n_samples)]
|
|
|
|
|
|
class SetCoverPerturber:
|
|
"""Perturbation generator for existing Set Cover instances.
|
|
|
|
Takes an existing SetCoverData instance and generates new instances
|
|
by applying randomization factors to the existing costs while keeping the
|
|
incidence matrix fixed.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
costs_jitter: rv_frozen = uniform(loc=0.9, scale=0.2),
|
|
):
|
|
"""Initialize the perturbation generator.
|
|
|
|
Parameters
|
|
----------
|
|
costs_jitter: rv_continuous
|
|
Probability distribution for randomization factors applied to set costs.
|
|
"""
|
|
assert isinstance(
|
|
costs_jitter, rv_frozen
|
|
), "costs_jitter should be a SciPy probability distribution"
|
|
self.costs_jitter = costs_jitter
|
|
|
|
def perturb(
|
|
self,
|
|
instance: SetCoverData,
|
|
n_samples: int,
|
|
) -> List[SetCoverData]:
|
|
def _sample() -> SetCoverData:
|
|
(_, n_sets) = instance.incidence_matrix.shape
|
|
jitter_factors = self.costs_jitter.rvs(n_sets)
|
|
costs = np.round(instance.costs * jitter_factors, 2)
|
|
return SetCoverData(
|
|
costs=costs,
|
|
incidence_matrix=instance.incidence_matrix,
|
|
)
|
|
|
|
return [_sample() for _ in range(n_samples)]
|
|
|
|
|
|
def build_setcover_model_gurobipy(data: Union[str, SetCoverData]) -> GurobiModel:
|
|
data = _read_setcover_data(data)
|
|
(n_elements, n_sets) = data.incidence_matrix.shape
|
|
model = gp.Model()
|
|
x = model.addMVar(n_sets, vtype=GRB.BINARY, name="x")
|
|
model.addConstr(data.incidence_matrix @ x >= np.ones(n_elements), name="eqs")
|
|
model.setObjective(data.costs @ x)
|
|
model.update()
|
|
return GurobiModel(model)
|
|
|
|
|
|
def build_setcover_model_pyomo(
|
|
data: Union[str, SetCoverData],
|
|
solver: str = "gurobi_persistent",
|
|
) -> PyomoModel:
|
|
data = _read_setcover_data(data)
|
|
(n_elements, n_sets) = data.incidence_matrix.shape
|
|
model = pe.ConcreteModel()
|
|
model.sets = pe.Set(initialize=range(n_sets))
|
|
model.x = pe.Var(model.sets, domain=pe.Boolean, name="x")
|
|
model.eqs = pe.Constraint(pe.Any)
|
|
for i in range(n_elements):
|
|
model.eqs[i] = (
|
|
sum(data.incidence_matrix[i, j] * model.x[j] for j in range(n_sets)) >= 1
|
|
)
|
|
model.obj = pe.Objective(
|
|
expr=sum(data.costs[j] * model.x[j] for j in range(n_sets))
|
|
)
|
|
return PyomoModel(model, solver)
|
|
|
|
|
|
def _read_setcover_data(data: Union[str, SetCoverData]) -> SetCoverData:
|
|
if isinstance(data, str):
|
|
data = read_pkl_gz(data)
|
|
assert isinstance(data, SetCoverData)
|
|
return data
|