You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
5.2 KiB
172 lines
5.2 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
from typing import List, cast
|
|
from unittest.mock import Mock
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from numpy.testing import assert_array_equal
|
|
|
|
from miplearn import Instance
|
|
from miplearn.classifiers import Classifier
|
|
from miplearn.classifiers.threshold import MinProbabilityThreshold
|
|
from miplearn.components import classifier_evaluation_dict
|
|
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
|
|
from miplearn.features import (
|
|
TrainingSample,
|
|
Features,
|
|
InstanceFeatures,
|
|
)
|
|
|
|
E = 0.1
|
|
|
|
|
|
@pytest.fixture
|
|
def training_instances() -> List[Instance]:
|
|
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
|
|
instances[0].features = Features(
|
|
instance=InstanceFeatures(
|
|
user_features=[50.0],
|
|
),
|
|
)
|
|
instances[0].training_data = [
|
|
TrainingSample(lazy_enforced={"c1", "c2"}),
|
|
TrainingSample(lazy_enforced={"c2", "c3"}),
|
|
]
|
|
instances[0].get_constraint_category = Mock( # type: ignore
|
|
side_effect=lambda cid: {
|
|
"c1": "type-a",
|
|
"c2": "type-a",
|
|
"c3": "type-b",
|
|
"c4": "type-b",
|
|
}[cid]
|
|
)
|
|
instances[0].get_constraint_features = Mock( # type: ignore
|
|
side_effect=lambda cid: {
|
|
"c1": [1.0, 2.0, 3.0],
|
|
"c2": [4.0, 5.0, 6.0],
|
|
"c3": [1.0, 2.0],
|
|
"c4": [3.0, 4.0],
|
|
}[cid]
|
|
)
|
|
instances[1].features = Features(
|
|
instance=InstanceFeatures(
|
|
user_features=[80.0],
|
|
),
|
|
)
|
|
instances[1].training_data = [
|
|
TrainingSample(lazy_enforced={"c3", "c4"}),
|
|
]
|
|
instances[1].get_constraint_category = Mock( # type: ignore
|
|
side_effect=lambda cid: {
|
|
"c1": None,
|
|
"c2": "type-a",
|
|
"c3": "type-b",
|
|
"c4": "type-b",
|
|
}[cid]
|
|
)
|
|
instances[1].get_constraint_features = Mock( # type: ignore
|
|
side_effect=lambda cid: {
|
|
"c2": [7.0, 8.0, 9.0],
|
|
"c3": [5.0, 6.0],
|
|
"c4": [7.0, 8.0],
|
|
}[cid]
|
|
)
|
|
return instances
|
|
|
|
|
|
def test_fit(training_instances: List[Instance]) -> None:
|
|
clf = Mock(spec=Classifier)
|
|
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
|
|
comp = DynamicLazyConstraintsComponent(classifier=clf)
|
|
comp.fit(training_instances)
|
|
assert clf.clone.call_count == 2
|
|
|
|
assert "type-a" in comp.classifiers
|
|
clf_a = comp.classifiers["type-a"]
|
|
assert clf_a.fit.call_count == 1 # type: ignore
|
|
assert_array_equal(
|
|
clf_a.fit.call_args[0][0], # type: ignore
|
|
np.array(
|
|
[
|
|
[50.0, 1.0, 2.0, 3.0],
|
|
[50.0, 4.0, 5.0, 6.0],
|
|
[50.0, 1.0, 2.0, 3.0],
|
|
[50.0, 4.0, 5.0, 6.0],
|
|
[80.0, 7.0, 8.0, 9.0],
|
|
]
|
|
),
|
|
)
|
|
assert_array_equal(
|
|
clf_a.fit.call_args[0][1], # type: ignore
|
|
np.array(
|
|
[
|
|
[False, True],
|
|
[False, True],
|
|
[True, False],
|
|
[False, True],
|
|
[True, False],
|
|
]
|
|
),
|
|
)
|
|
|
|
assert "type-b" in comp.classifiers
|
|
clf_b = comp.classifiers["type-b"]
|
|
assert clf_b.fit.call_count == 1 # type: ignore
|
|
assert_array_equal(
|
|
clf_b.fit.call_args[0][0], # type: ignore
|
|
np.array(
|
|
[
|
|
[50.0, 1.0, 2.0],
|
|
[50.0, 3.0, 4.0],
|
|
[50.0, 1.0, 2.0],
|
|
[50.0, 3.0, 4.0],
|
|
[80.0, 5.0, 6.0],
|
|
[80.0, 7.0, 8.0],
|
|
]
|
|
),
|
|
)
|
|
assert_array_equal(
|
|
clf_b.fit.call_args[0][1], # type: ignore
|
|
np.array(
|
|
[
|
|
[True, False],
|
|
[True, False],
|
|
[False, True],
|
|
[True, False],
|
|
[False, True],
|
|
[False, True],
|
|
]
|
|
),
|
|
)
|
|
|
|
|
|
def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
|
|
comp = DynamicLazyConstraintsComponent()
|
|
comp.known_cids = ["c1", "c2", "c3", "c4"]
|
|
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
|
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
|
|
comp.classifiers["type-a"] = Mock(spec=Classifier)
|
|
comp.classifiers["type-b"] = Mock(spec=Classifier)
|
|
comp.classifiers["type-a"].predict_proba = Mock( # type: ignore
|
|
side_effect=lambda _: np.array([[0.1, 0.9], [0.8, 0.2]])
|
|
)
|
|
comp.classifiers["type-b"].predict_proba = Mock( # type: ignore
|
|
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
|
|
)
|
|
pred = comp.sample_predict(
|
|
training_instances[0],
|
|
training_instances[0].training_data[0],
|
|
)
|
|
assert pred == ["c1", "c4"]
|
|
ev = comp.sample_evaluate(
|
|
training_instances[0],
|
|
training_instances[0].training_data[0],
|
|
)
|
|
print(ev)
|
|
assert ev == {
|
|
"type-a": classifier_evaluation_dict(tp=1, fp=0, tn=0, fn=1),
|
|
"type-b": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=0),
|
|
}
|