You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/components/test_lazy_dynamic.py

172 lines
5.2 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import List, cast
from unittest.mock import Mock
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from miplearn import Instance
from miplearn.classifiers import Classifier
from miplearn.classifiers.threshold import MinProbabilityThreshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
from miplearn.features import (
TrainingSample,
Features,
InstanceFeatures,
)
E = 0.1
@pytest.fixture
def training_instances() -> List[Instance]:
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
instances[0].features = Features(
instance=InstanceFeatures(
user_features=[50.0],
),
)
instances[0].training_data = [
TrainingSample(lazy_enforced={"c1", "c2"}),
TrainingSample(lazy_enforced={"c2", "c3"}),
]
instances[0].get_constraint_category = Mock( # type: ignore
side_effect=lambda cid: {
"c1": "type-a",
"c2": "type-a",
"c3": "type-b",
"c4": "type-b",
}[cid]
)
instances[0].get_constraint_features = Mock( # type: ignore
side_effect=lambda cid: {
"c1": [1.0, 2.0, 3.0],
"c2": [4.0, 5.0, 6.0],
"c3": [1.0, 2.0],
"c4": [3.0, 4.0],
}[cid]
)
instances[1].features = Features(
instance=InstanceFeatures(
user_features=[80.0],
),
)
instances[1].training_data = [
TrainingSample(lazy_enforced={"c3", "c4"}),
]
instances[1].get_constraint_category = Mock( # type: ignore
side_effect=lambda cid: {
"c1": None,
"c2": "type-a",
"c3": "type-b",
"c4": "type-b",
}[cid]
)
instances[1].get_constraint_features = Mock( # type: ignore
side_effect=lambda cid: {
"c2": [7.0, 8.0, 9.0],
"c3": [5.0, 6.0],
"c4": [7.0, 8.0],
}[cid]
)
return instances
def test_fit(training_instances: List[Instance]) -> None:
clf = Mock(spec=Classifier)
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
comp = DynamicLazyConstraintsComponent(classifier=clf)
comp.fit(training_instances)
assert clf.clone.call_count == 2
assert "type-a" in comp.classifiers
clf_a = comp.classifiers["type-a"]
assert clf_a.fit.call_count == 1 # type: ignore
assert_array_equal(
clf_a.fit.call_args[0][0], # type: ignore
np.array(
[
[50.0, 1.0, 2.0, 3.0],
[50.0, 4.0, 5.0, 6.0],
[50.0, 1.0, 2.0, 3.0],
[50.0, 4.0, 5.0, 6.0],
[80.0, 7.0, 8.0, 9.0],
]
),
)
assert_array_equal(
clf_a.fit.call_args[0][1], # type: ignore
np.array(
[
[False, True],
[False, True],
[True, False],
[False, True],
[True, False],
]
),
)
assert "type-b" in comp.classifiers
clf_b = comp.classifiers["type-b"]
assert clf_b.fit.call_count == 1 # type: ignore
assert_array_equal(
clf_b.fit.call_args[0][0], # type: ignore
np.array(
[
[50.0, 1.0, 2.0],
[50.0, 3.0, 4.0],
[50.0, 1.0, 2.0],
[50.0, 3.0, 4.0],
[80.0, 5.0, 6.0],
[80.0, 7.0, 8.0],
]
),
)
assert_array_equal(
clf_b.fit.call_args[0][1], # type: ignore
np.array(
[
[True, False],
[True, False],
[False, True],
[True, False],
[False, True],
[False, True],
]
),
)
def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
comp = DynamicLazyConstraintsComponent()
comp.known_cids = ["c1", "c2", "c3", "c4"]
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
comp.classifiers["type-a"] = Mock(spec=Classifier)
comp.classifiers["type-b"] = Mock(spec=Classifier)
comp.classifiers["type-a"].predict_proba = Mock( # type: ignore
side_effect=lambda _: np.array([[0.1, 0.9], [0.8, 0.2]])
)
comp.classifiers["type-b"].predict_proba = Mock( # type: ignore
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
)
pred = comp.sample_predict(
training_instances[0],
training_instances[0].training_data[0],
)
assert pred == ["c1", "c4"]
ev = comp.sample_evaluate(
training_instances[0],
training_instances[0].training_data[0],
)
print(ev)
assert ev == {
"type-a": classifier_evaluation_dict(tp=1, fp=0, tn=0, fn=1),
"type-b": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=0),
}