You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/branching.py

144 lines
6.0 KiB

# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from . import Component
from .transformers import PerVariableTransformer
from abc import ABC, abstractmethod
from sklearn.neighbors import KNeighborsRegressor
import numpy as np
from p_tqdm import p_map
from tqdm.auto import tqdm
from joblib import Parallel, delayed
import multiprocessing
class BranchPriorityComponent(Component):
def __init__(self,
node_limit=1_000,
):
self.transformer = PerVariableTransformer()
self.pending_instances = []
self.x_train = {}
self.y_train = {}
self.predictors = {}
self.node_limit = node_limit
def before_solve(self, solver, instance, model):
assert solver.is_persistent, "BranchPriorityComponent requires a persistent solver"
from gurobipy import GRB
var_split = self.transformer.split_variables(instance, model)
for category in var_split.keys():
if category not in self.predictors.keys():
continue
var_index_pairs = var_split[category]
for (i, (var, index)) in enumerate(var_index_pairs):
x = self._build_x(instance, var, index)
y = self.predictors[category].predict([x])[0][0]
gvar = solver.internal_solver._pyomo_var_to_solver_var_map[var[index]]
gvar.setAttr(GRB.Attr.BranchPriority, int(round(y)))
def after_solve(self, solver, instance, model):
self.pending_instances += [instance]
def fit(self, solver, n_jobs=1):
def _process(instance):
# Create LP file
import subprocess, tempfile, os, sys
lp_file = tempfile.NamedTemporaryFile(suffix=".lp")
priority_file = tempfile.NamedTemporaryFile()
model = instance.to_model()
model.write(lp_file.name)
# Run Julia script
src_dirname = os.path.dirname(os.path.realpath(__file__))
priority_file = tempfile.NamedTemporaryFile(mode="r")
subprocess.run(["julia",
"%s/scripts/branchpriority.jl" % src_dirname,
lp_file.name,
priority_file.name,
str(self.node_limit),
],
check=True,
)
# Parse output
tokens = [line.strip().split(",") for line in priority_file.readlines()]
lp_varname_to_priority = {t[0]: int(t[1]) for t in tokens}
# Map priorities back to Pyomo variables
pyomo_var_to_priority = {}
from pyomo.core import Var
from pyomo.core.base.label import TextLabeler
labeler = TextLabeler()
symbol_map = list(model.solutions.symbol_map.values())[0]
# Build x_train and y_train
comp = BranchPriorityComponent()
for var in model.component_objects(Var):
for index in var:
category = instance.get_variable_category(var, index)
if category is None:
continue
lp_varname = symbol_map.getSymbol(var[index], labeler)
var_priority = lp_varname_to_priority[lp_varname]
x = self._build_x(instance, var, index)
y = np.array([var_priority])
if category not in comp.x_train.keys():
comp.x_train[category] = np.array([x])
comp.y_train[category] = np.array([y])
else:
comp.x_train[category] = np.vstack([comp.x_train[category], x])
comp.y_train[category] = np.vstack([comp.y_train[category], y])
return comp
subcomponents = Parallel(n_jobs=n_jobs)(
delayed(_process)(instance)
for instance in tqdm(self.pending_instances, desc="Branch priority")
)
self.merge(subcomponents)
self.pending_instances.clear()
# Retrain ML predictors
for category in self.x_train.keys():
x_train = self.x_train[category]
y_train = self.y_train[category]
self.predictors[category] = KNeighborsRegressor(n_neighbors=1)
self.predictors[category].fit(x_train, y_train)
def _build_x(self, instance, var, index):
instance_features = instance.get_instance_features()
var_features = instance.get_variable_features(var, index)
return np.hstack([instance_features, var_features])
def merge(self, other_components):
keys = set(self.x_train.keys())
for comp in other_components:
self.pending_instances += comp.pending_instances
keys = keys.union(set(comp.x_train.keys()))
# Merge x_train and y_train
for key in keys:
x_train_submatrices = [comp.x_train[key]
for comp in other_components
if key in comp.x_train.keys()]
y_train_submatrices = [comp.y_train[key]
for comp in other_components
if key in comp.y_train.keys()]
if key in self.x_train.keys():
x_train_submatrices += [self.x_train[key]]
y_train_submatrices += [self.y_train[key]]
self.x_train[key] = np.vstack(x_train_submatrices)
self.y_train[key] = np.vstack(y_train_submatrices)
# Merge trained ML predictors
for comp in other_components:
for key in comp.predictors.keys():
if key not in self.predictors.keys():
self.predictors[key] = comp.predictors[key]