You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/solvers/test_internal_solver.py

202 lines
7.0 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
from io import StringIO
from warnings import warn
import pyomo.environ as pe
from miplearn.solvers import _RedirectOutput
from miplearn.solvers.gurobi import GurobiSolver
from miplearn.solvers.pyomo.base import BasePyomoSolver
from . import (
_get_knapsack_instance,
get_internal_solvers,
)
from ..fixtures.infeasible import get_infeasible_instance
logger = logging.getLogger(__name__)
def test_redirect_output() -> None:
import sys
original_stdout = sys.stdout
io = StringIO()
with _RedirectOutput([io]):
print("Hello world")
assert sys.stdout == original_stdout
assert io.getvalue() == "Hello world\n"
def test_internal_solver_warm_starts() -> None:
for solver in get_internal_solvers():
logger.info("Solver: %s" % solver)
instance = _get_knapsack_instance(solver)
model = instance.to_model()
solver.set_instance(instance, model)
solver.set_warm_start({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
if stats["Warm start value"] is not None:
assert stats["Warm start value"] == 725.0
else:
warn(f"{solver.__class__.__name__} should set warm start value")
solver.set_warm_start({"x[0]": 1.0, "x[1]": 1.0, "x[2]": 1.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
assert stats["Warm start value"] is None
solver.fix({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
assert stats["Lower bound"] == 725.0
assert stats["Upper bound"] == 725.0
def test_internal_solver() -> None:
for solver in get_internal_solvers():
logger.info("Solver: %s" % solver)
instance = _get_knapsack_instance(solver)
model = instance.to_model()
solver.set_instance(instance, model)
assert solver.get_variable_names() == ["x[0]", "x[1]", "x[2]", "x[3]"]
lp_stats = solver.solve_lp()
assert not solver.is_infeasible()
assert lp_stats["LP value"] is not None
assert round(lp_stats["LP value"], 3) == 1287.923
assert len(lp_stats["LP log"]) > 100
solution = solver.get_solution()
assert solution is not None
assert solution["x[0]"] is not None
assert solution["x[1]"] is not None
assert solution["x[2]"] is not None
assert solution["x[3]"] is not None
assert round(solution["x[0]"], 3) == 1.000
assert round(solution["x[1]"], 3) == 0.923
assert round(solution["x[2]"], 3) == 1.000
assert round(solution["x[3]"], 3) == 0.000
mip_stats = solver.solve(tee=True)
assert not solver.is_infeasible()
assert len(mip_stats["MIP log"]) > 100
assert mip_stats["Lower bound"] == 1183.0
assert mip_stats["Upper bound"] == 1183.0
assert mip_stats["Sense"] == "max"
assert isinstance(mip_stats["Wallclock time"], float)
solution = solver.get_solution()
assert solution is not None
assert solution["x[0]"] is not None
assert solution["x[1]"] is not None
assert solution["x[2]"] is not None
assert solution["x[3]"] is not None
assert solution["x[0]"] == 1.0
assert solution["x[1]"] == 0.0
assert solution["x[2]"] == 1.0
assert solution["x[3]"] == 1.0
# Add a brand new constraint
if isinstance(solver, BasePyomoSolver):
model.cut = pe.Constraint(expr=model.x[0] <= 0.0, name="cut")
solver.add_constraint(model.cut)
elif isinstance(solver, GurobiSolver):
x = model.getVarByName("x[0]")
solver.add_constraint(x <= 0.0, name="cut")
else:
raise Exception("Illegal state")
# New constraint should affect solution and should be listed in
# constraint ids
assert solver.get_constraint_ids() == ["eq_capacity", "cut"]
stats = solver.solve()
assert stats["Lower bound"] == 1030.0
assert solver.get_sense() == "max"
assert solver.get_constraint_sense("cut") == "<"
assert solver.get_constraint_sense("eq_capacity") == "<"
# Verify slacks
assert solver.get_inequality_slacks() == {
"cut": 0.0,
"eq_capacity": 3.0,
}
if isinstance(solver, GurobiSolver):
# Extract the new constraint
cobj = solver.extract_constraint("cut")
# New constraint should no longer affect solution and should no longer
# be listed in constraint ids
assert solver.get_constraint_ids() == ["eq_capacity"]
stats = solver.solve()
assert stats["Lower bound"] == 1183.0
# New constraint should not be satisfied by current solution
assert not solver.is_constraint_satisfied(cobj)
# Re-add constraint
solver.add_constraint(cobj)
# Constraint should affect solution again
assert solver.get_constraint_ids() == ["eq_capacity", "cut"]
stats = solver.solve()
assert stats["Lower bound"] == 1030.0
# New constraint should now be satisfied
assert solver.is_constraint_satisfied(cobj)
# Relax problem and make cut into an equality constraint
solver.relax()
solver.set_constraint_sense("cut", "=")
stats = solver.solve()
assert stats["Lower bound"] is not None
assert round(stats["Lower bound"]) == 1030.0
assert round(solver.get_dual("eq_capacity")) == 0.0
def test_relax() -> None:
for solver in get_internal_solvers():
instance = _get_knapsack_instance(solver)
solver.set_instance(instance)
solver.relax()
stats = solver.solve()
assert stats["Lower bound"] is not None
assert round(stats["Lower bound"]) == 1288.0
def test_infeasible_instance() -> None:
for solver in get_internal_solvers():
instance = get_infeasible_instance(solver)
solver.set_instance(instance)
mip_stats = solver.solve()
assert solver.is_infeasible()
assert solver.get_solution() is None
assert mip_stats["Upper bound"] is None
assert mip_stats["Lower bound"] is None
lp_stats = solver.solve_lp()
assert solver.get_solution() is None
assert lp_stats["LP value"] is None
def test_iteration_cb() -> None:
for solver in get_internal_solvers():
logger.info("Solver: %s" % solver)
instance = _get_knapsack_instance(solver)
solver.set_instance(instance)
count = 0
def custom_iteration_cb() -> bool:
nonlocal count
count += 1
return count < 5
solver.solve(iteration_cb=custom_iteration_cb)
assert count == 5