You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
147 lines
4.5 KiB
147 lines
4.5 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import List, Optional, Union
|
|
|
|
import gurobipy as gp
|
|
import numpy as np
|
|
from gurobipy import GRB, quicksum
|
|
from scipy.stats import uniform, randint
|
|
from scipy.stats.distributions import rv_frozen
|
|
|
|
from miplearn.io import read_pkl_gz
|
|
from miplearn.solvers.gurobi import GurobiModel
|
|
|
|
|
|
@dataclass
|
|
class BinPackData:
|
|
"""Data for the bin packing problem.
|
|
|
|
Parameters
|
|
----------
|
|
sizes
|
|
Sizes of the items
|
|
capacity
|
|
Capacity of the bin
|
|
"""
|
|
|
|
sizes: np.ndarray
|
|
capacity: int
|
|
|
|
|
|
class BinPackGenerator:
|
|
"""Random instance generator for the bin packing problem.
|
|
|
|
If `fix_items=False`, the class samples the user-provided probability distributions
|
|
n, sizes and capacity to decide, respectively, the number of items, the sizes of
|
|
the items and capacity of the bin. All values are sampled independently.
|
|
|
|
If `fix_items=True`, the class creates a reference instance, using the method
|
|
previously described, then generates additional instances by perturbing its item
|
|
sizes and bin capacity. More specifically, the sizes of the items are set to `s_i
|
|
* gamma_i` where `s_i` is the size of the i-th item in the reference instance and
|
|
`gamma_i` is sampled from `sizes_jitter`. Similarly, the bin capacity is set to `B *
|
|
beta`, where `B` is the reference bin capacity and `beta` is sampled from
|
|
`capacity_jitter`. The number of items remains the same across all generated
|
|
instances.
|
|
|
|
Args
|
|
----
|
|
n
|
|
Probability distribution for the number of items.
|
|
sizes
|
|
Probability distribution for the item sizes.
|
|
capacity
|
|
Probability distribution for the bin capacity.
|
|
sizes_jitter
|
|
Probability distribution for the item size randomization.
|
|
capacity_jitter
|
|
Probability distribution for the bin capacity.
|
|
fix_items
|
|
If `True`, generates a reference instance, then applies some perturbation to it.
|
|
If `False`, generates completely different instances.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
n: rv_frozen,
|
|
sizes: rv_frozen,
|
|
capacity: rv_frozen,
|
|
sizes_jitter: rv_frozen,
|
|
capacity_jitter: rv_frozen,
|
|
fix_items: bool,
|
|
) -> None:
|
|
self.n = n
|
|
self.sizes = sizes
|
|
self.capacity = capacity
|
|
self.sizes_jitter = sizes_jitter
|
|
self.capacity_jitter = capacity_jitter
|
|
self.fix_items = fix_items
|
|
self.ref_data: Optional[BinPackData] = None
|
|
|
|
def generate(self, n_samples: int) -> List[BinPackData]:
|
|
"""Generates random instances.
|
|
|
|
Parameters
|
|
----------
|
|
n_samples
|
|
Number of samples to generate.
|
|
"""
|
|
|
|
def _sample() -> BinPackData:
|
|
if self.ref_data is None:
|
|
n = self.n.rvs()
|
|
sizes = self.sizes.rvs(n)
|
|
capacity = self.capacity.rvs()
|
|
if self.fix_items:
|
|
self.ref_data = BinPackData(sizes, capacity)
|
|
else:
|
|
n = self.ref_data.sizes.shape[0]
|
|
sizes = self.ref_data.sizes
|
|
capacity = self.ref_data.capacity
|
|
|
|
sizes = sizes * self.sizes_jitter.rvs(n)
|
|
capacity = capacity * self.capacity_jitter.rvs()
|
|
return BinPackData(sizes.round(2), capacity.round(2))
|
|
|
|
return [_sample() for n in range(n_samples)]
|
|
|
|
|
|
def build_binpack_model(data: Union[str, BinPackData]) -> GurobiModel:
|
|
"""Converts bin packing problem data into a concrete Gurobipy model."""
|
|
if isinstance(data, str):
|
|
data = read_pkl_gz(data)
|
|
assert isinstance(data, BinPackData)
|
|
|
|
model = gp.Model()
|
|
n = data.sizes.shape[0]
|
|
|
|
# Var: Use bin
|
|
y = model.addVars(n, name="y", vtype=GRB.BINARY)
|
|
|
|
# Var: Assign item to bin
|
|
x = model.addVars(n, n, name="x", vtype=GRB.BINARY)
|
|
|
|
# Obj: Minimize number of bins
|
|
model.setObjective(quicksum(y[i] for i in range(n)))
|
|
|
|
# Eq: Enforce bin capacity
|
|
model.addConstrs(
|
|
(
|
|
quicksum(data.sizes[i] * x[i, j] for i in range(n)) <= data.capacity * y[j]
|
|
for j in range(n)
|
|
),
|
|
name="eq_capacity",
|
|
)
|
|
|
|
# Eq: Must assign all items to bins
|
|
model.addConstrs(
|
|
(quicksum(x[i, j] for j in range(n)) == 1 for i in range(n)),
|
|
name="eq_assign",
|
|
)
|
|
|
|
model.update()
|
|
return GurobiModel(model)
|