You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/problems/test_setcover.py

94 lines
2.8 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from tempfile import NamedTemporaryFile
import numpy as np
from scipy.stats import randint, uniform
from miplearn.h5 import H5File
from miplearn.problems.setcover import (
SetCoverData,
build_setcover_model_gurobipy,
SetCoverGenerator,
build_setcover_model_pyomo,
)
from miplearn.solvers.abstract import AbstractModel
def test_set_cover_generator() -> None:
np.random.seed(42)
gen = SetCoverGenerator(
n_elements=randint(low=3, high=4),
n_sets=randint(low=5, high=6),
costs=uniform(loc=0.0, scale=100.0),
costs_jitter=uniform(loc=0.95, scale=0.10),
density=uniform(loc=0.5, scale=0),
K=uniform(loc=25, scale=0),
fix_sets=False,
)
data = gen.generate(2)
assert data[0].costs.round(1).tolist() == [136.8, 86.2, 25.7, 27.3, 102.5]
assert data[0].incidence_matrix.tolist() == [
[1, 0, 1, 0, 1],
[1, 1, 0, 0, 0],
[1, 0, 0, 1, 1],
]
assert data[1].costs.round(1).tolist() == [63.5, 76.6, 48.1, 74.1, 93.3]
assert data[1].incidence_matrix.tolist() == [
[1, 1, 0, 1, 1],
[0, 1, 0, 1, 0],
[0, 1, 1, 0, 0],
]
def test_set_cover_generator_with_fixed_sets() -> None:
np.random.seed(42)
gen = SetCoverGenerator(
n_elements=randint(low=3, high=4),
n_sets=randint(low=5, high=6),
costs=uniform(loc=0.0, scale=100.0),
costs_jitter=uniform(loc=0.95, scale=0.10),
density=uniform(loc=0.5, scale=0.00),
fix_sets=True,
)
data = gen.generate(3)
assert data[0].costs.tolist() == [136.75, 86.17, 25.71, 27.31, 102.48]
assert data[1].costs.tolist() == [135.38, 82.26, 26.92, 26.58, 98.28]
assert data[2].costs.tolist() == [138.37, 85.15, 26.95, 27.22, 106.17]
print(data[0].incidence_matrix)
for i in range(3):
assert data[i].incidence_matrix.tolist() == [
[1, 0, 1, 0, 1],
[1, 1, 0, 0, 0],
[1, 0, 0, 1, 1],
]
def test_set_cover() -> None:
data = SetCoverData(
costs=np.array([5, 10, 12, 6, 8]),
incidence_matrix=np.array(
[
[1, 0, 0, 1, 0],
[1, 1, 0, 0, 0],
[0, 0, 1, 1, 1],
],
),
)
for model in [
build_setcover_model_pyomo(data),
build_setcover_model_gurobipy(data),
]:
assert isinstance(model, AbstractModel)
with NamedTemporaryFile() as tempfile:
with H5File(tempfile.name) as h5:
model.optimize()
model.extract_after_mip(h5)
assert h5.get_scalar("mip_obj_value") == 11.0