You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
165 lines
6.5 KiB
165 lines
6.5 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from copy import deepcopy
|
|
|
|
from miplearn.classifiers.adaptive import AdaptiveClassifier
|
|
from miplearn.components import classifier_evaluation_dict
|
|
from sklearn.metrics import roc_curve
|
|
from p_tqdm import p_map
|
|
|
|
from .component import Component
|
|
from ..extractors import *
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class PrimalSolutionComponent(Component):
|
|
"""
|
|
A component that predicts primal solutions.
|
|
"""
|
|
|
|
def __init__(self,
|
|
classifier=AdaptiveClassifier(),
|
|
mode="exact",
|
|
max_fpr=[1e-3, 1e-3],
|
|
min_threshold=[0.75, 0.75],
|
|
dynamic_thresholds=True,
|
|
):
|
|
self.mode = mode
|
|
self.is_warm_start_available = False
|
|
self.max_fpr = max_fpr
|
|
self.min_threshold = min_threshold
|
|
self.thresholds = {}
|
|
self.classifiers = {}
|
|
self.classifier_prototype = classifier
|
|
self.dynamic_thresholds = dynamic_thresholds
|
|
|
|
def before_solve(self, solver, instance, model):
|
|
solution = self.predict(instance)
|
|
if self.mode == "heuristic":
|
|
solver.internal_solver.fix(solution)
|
|
else:
|
|
solver.internal_solver.set_warm_start(solution)
|
|
|
|
def after_solve(self, solver, instance, model, results):
|
|
pass
|
|
|
|
def fit(self, training_instances, n_jobs=1):
|
|
logger.debug("Extracting features...")
|
|
features = VariableFeaturesExtractor().extract(training_instances)
|
|
solutions = SolutionExtractor().extract(training_instances)
|
|
|
|
def _fit(args):
|
|
category, label = args[0], args[1]
|
|
x_train = features[category]
|
|
y_train = solutions[category]
|
|
y = y_train[:, label].astype(int)
|
|
|
|
if isinstance(self.classifier_prototype, list):
|
|
clf = deepcopy(self.classifier_prototype[label])
|
|
else:
|
|
clf = deepcopy(self.classifier_prototype)
|
|
clf.fit(x_train, y)
|
|
|
|
y_avg = np.average(y)
|
|
if (not self.dynamic_thresholds) or y_avg <= 0.001 or y_avg >= 0.999:
|
|
return {"classifier": clf,
|
|
"threshold": self.min_threshold[label]}
|
|
|
|
proba = clf.predict_proba(x_train)
|
|
assert isinstance(proba, np.ndarray), \
|
|
"classifier should return numpy array"
|
|
assert proba.shape == (x_train.shape[0], 2), \
|
|
"classifier should return (%d,%d)-shaped array, not %s" % (
|
|
x_train.shape[0], 2, str(proba.shape))
|
|
|
|
y_scores = proba[:, 1]
|
|
fpr, tpr, thresholds = roc_curve(y, y_scores)
|
|
k = 0
|
|
while True:
|
|
if (k + 1) > len(fpr):
|
|
break
|
|
if fpr[k + 1] > self.max_fpr[label]:
|
|
break
|
|
if thresholds[k + 1] < self.min_threshold[label]:
|
|
break
|
|
k = k + 1
|
|
self.thresholds[category, label] = thresholds[k]
|
|
|
|
return {"classifier": clf,
|
|
"threshold": thresholds[k]}
|
|
|
|
items = [(category, label)
|
|
for category in features.keys()
|
|
for label in [0, 1]]
|
|
|
|
if n_jobs == 1:
|
|
results = list(map(_fit, tqdm(items, desc="Fit (primal)")))
|
|
else:
|
|
results = p_map(_fit, items, num_cpus=n_jobs)
|
|
|
|
for (idx, (category, label)) in enumerate(items):
|
|
self.thresholds[category, label] = results[idx]["threshold"]
|
|
self.classifiers[category, label] = results[idx]["classifier"]
|
|
|
|
def predict(self, instance):
|
|
x_test = VariableFeaturesExtractor().extract([instance])
|
|
solution = {}
|
|
var_split = Extractor.split_variables(instance)
|
|
for category in var_split.keys():
|
|
for (i, (var, index)) in enumerate(var_split[category]):
|
|
if var not in solution.keys():
|
|
solution[var] = {}
|
|
solution[var][index] = None
|
|
for label in [0, 1]:
|
|
if (category, label) not in self.classifiers.keys():
|
|
continue
|
|
ws = self.classifiers[category, label].predict_proba(x_test[category])
|
|
logger.debug("%s[%s] ws=%.6f threshold=%.6f" %
|
|
(var, index, ws[i, 1], self.thresholds[category, label]))
|
|
if ws[i, 1] >= self.thresholds[category, label]:
|
|
solution[var][index] = label
|
|
return solution
|
|
|
|
def evaluate(self, instances):
|
|
ev = {"Fix zero": {},
|
|
"Fix one": {}}
|
|
for instance_idx in tqdm(range(len(instances)),
|
|
desc="Evaluate (primal)"):
|
|
instance = instances[instance_idx]
|
|
solution_actual = instance.solution
|
|
solution_pred = self.predict(instance)
|
|
|
|
vars_all, vars_one, vars_zero = set(), set(), set()
|
|
pred_one_positive, pred_zero_positive = set(), set()
|
|
for (varname, var_dict) in solution_actual.items():
|
|
for (idx, value) in var_dict.items():
|
|
vars_all.add((varname, idx))
|
|
if value > 0.5:
|
|
vars_one.add((varname, idx))
|
|
else:
|
|
vars_zero.add((varname, idx))
|
|
if solution_pred[varname][idx] is not None:
|
|
if solution_pred[varname][idx] > 0.5:
|
|
pred_one_positive.add((varname, idx))
|
|
else:
|
|
pred_zero_positive.add((varname, idx))
|
|
pred_one_negative = vars_all - pred_one_positive
|
|
pred_zero_negative = vars_all - pred_zero_positive
|
|
|
|
tp_zero = len(pred_zero_positive & vars_zero)
|
|
fp_zero = len(pred_zero_positive & vars_one)
|
|
tn_zero = len(pred_zero_negative & vars_one)
|
|
fn_zero = len(pred_zero_negative & vars_zero)
|
|
|
|
tp_one = len(pred_one_positive & vars_one)
|
|
fp_one = len(pred_one_positive & vars_zero)
|
|
tn_one = len(pred_one_negative & vars_zero)
|
|
fn_one = len(pred_one_negative & vars_one)
|
|
|
|
ev["Fix zero"][instance_idx] = classifier_evaluation_dict(tp_zero, tn_zero, fp_zero, fn_zero)
|
|
ev["Fix one"][instance_idx] = classifier_evaluation_dict(tp_one, tn_one, fp_one, fn_one)
|
|
return ev
|