You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/tests/test_benchmark.py

41 lines
1.5 KiB

# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright © 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver, BenchmarkRunner, KnnWarmStartPredictor
from miplearn.problems.stab import MaxWeightStableSetGenerator
from scipy.stats import randint
import numpy as np
import pyomo.environ as pe
import os.path
def test_benchmark():
# Generate training and test instances
train_instances = MaxWeightStableSetGenerator(n=randint(low=25, high=26)).generate(5)
test_instances = MaxWeightStableSetGenerator(n=randint(low=25, high=26)).generate(3)
# Training phase...
training_solver = LearningSolver()
training_solver.parallel_solve(train_instances, n_jobs=10)
training_solver.fit()
training_solver.save_state("data.bin")
# Test phase...
test_solvers = {
"Strategy A": LearningSolver(),
"Strategy B": LearningSolver(),
}
benchmark = BenchmarkRunner(test_solvers)
benchmark.load_state("data.bin")
benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2)
assert benchmark.raw_results().values.shape == (12,12)
benchmark.save_results("/tmp/benchmark.csv")
assert os.path.isfile("/tmp/benchmark.csv")
benchmark = BenchmarkRunner(test_solvers)
benchmark.load_results("/tmp/benchmark.csv")
assert benchmark.raw_results().values.shape == (12,12)