You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
135 lines
4.3 KiB
135 lines
4.3 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
from typing import Any, TYPE_CHECKING, Set, Tuple, Dict, List, Optional
|
|
|
|
import numpy as np
|
|
from overrides import overrides
|
|
|
|
from miplearn.classifiers import Classifier
|
|
from miplearn.classifiers.counting import CountingClassifier
|
|
from miplearn.classifiers.threshold import Threshold, MinProbabilityThreshold
|
|
from miplearn.components.component import Component
|
|
from miplearn.components.dynamic_common import DynamicConstraintsComponent
|
|
from miplearn.features.sample import Sample
|
|
from miplearn.instance.base import Instance
|
|
from miplearn.types import LearningSolveStats
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
if TYPE_CHECKING:
|
|
from miplearn.solvers.learning import LearningSolver
|
|
|
|
|
|
class UserCutsComponent(Component):
|
|
def __init__(
|
|
self,
|
|
classifier: Classifier = CountingClassifier(),
|
|
threshold: Threshold = MinProbabilityThreshold([0.50, 0.50]),
|
|
) -> None:
|
|
self.dynamic = DynamicConstraintsComponent(
|
|
classifier=classifier,
|
|
threshold=threshold,
|
|
attr="mip_user_cuts_enforced",
|
|
)
|
|
self.enforced: Set[str] = set()
|
|
self.n_added_in_callback = 0
|
|
|
|
@overrides
|
|
def before_solve_mip(
|
|
self,
|
|
solver: "LearningSolver",
|
|
instance: "Instance",
|
|
model: Any,
|
|
stats: LearningSolveStats,
|
|
sample: Sample,
|
|
) -> None:
|
|
assert solver.internal_solver is not None
|
|
self.enforced.clear()
|
|
self.n_added_in_callback = 0
|
|
logger.info("Predicting violated user cuts...")
|
|
cids = self.dynamic.sample_predict(instance, sample)
|
|
logger.info("Enforcing %d user cuts ahead-of-time..." % len(cids))
|
|
for cid in cids:
|
|
instance.enforce_user_cut(solver.internal_solver, model, cid)
|
|
stats["UserCuts: Added ahead-of-time"] = len(cids)
|
|
|
|
@overrides
|
|
def user_cut_cb(
|
|
self,
|
|
solver: "LearningSolver",
|
|
instance: "Instance",
|
|
model: Any,
|
|
) -> None:
|
|
assert solver.internal_solver is not None
|
|
logger.debug("Finding violated user cuts...")
|
|
cids = instance.find_violated_user_cuts(model)
|
|
logger.debug(f"Found {len(cids)} violated user cuts")
|
|
logger.debug("Building violated user cuts...")
|
|
for cid in cids:
|
|
if cid in self.enforced:
|
|
continue
|
|
assert isinstance(cid, str)
|
|
instance.enforce_user_cut(solver.internal_solver, model, cid)
|
|
self.enforced.add(cid)
|
|
self.n_added_in_callback += 1
|
|
if len(cids) > 0:
|
|
logger.debug(f"Added {len(cids)} violated user cuts")
|
|
|
|
@overrides
|
|
def after_solve_mip(
|
|
self,
|
|
solver: "LearningSolver",
|
|
instance: "Instance",
|
|
model: Any,
|
|
stats: LearningSolveStats,
|
|
sample: Sample,
|
|
) -> None:
|
|
sample.put_set("mip_user_cuts_enforced", set(self.enforced))
|
|
stats["UserCuts: Added in callback"] = self.n_added_in_callback
|
|
if self.n_added_in_callback > 0:
|
|
logger.info(f"{self.n_added_in_callback} user cuts added in callback")
|
|
|
|
# Delegate ML methods to self.dynamic
|
|
# -------------------------------------------------------------------
|
|
@overrides
|
|
def sample_xy(
|
|
self,
|
|
instance: "Instance",
|
|
sample: Sample,
|
|
) -> Tuple[Dict, Dict]:
|
|
return self.dynamic.sample_xy(instance, sample)
|
|
|
|
@overrides
|
|
def pre_fit(self, pre: List[Any]) -> None:
|
|
self.dynamic.pre_fit(pre)
|
|
|
|
def sample_predict(
|
|
self,
|
|
instance: "Instance",
|
|
sample: Sample,
|
|
) -> List[str]:
|
|
return self.dynamic.sample_predict(instance, sample)
|
|
|
|
@overrides
|
|
def pre_sample_xy(self, instance: Instance, sample: Sample) -> Any:
|
|
return self.dynamic.pre_sample_xy(instance, sample)
|
|
|
|
@overrides
|
|
def fit_xy(
|
|
self,
|
|
x: Dict[str, np.ndarray],
|
|
y: Dict[str, np.ndarray],
|
|
) -> None:
|
|
self.dynamic.fit_xy(x, y)
|
|
|
|
@overrides
|
|
def sample_evaluate(
|
|
self,
|
|
instance: "Instance",
|
|
sample: Sample,
|
|
) -> Dict[str, Dict[str, float]]:
|
|
return self.dynamic.sample_evaluate(instance, sample)
|