You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
84 lines
2.7 KiB
84 lines
2.7 KiB
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
|
|
|
from miplearn.transformers import PerVariableTransformer
|
|
from miplearn.problems.knapsack import KnapsackInstance, KnapsackInstance2
|
|
import numpy as np
|
|
import pyomo.environ as pe
|
|
|
|
|
|
def test_transform():
|
|
transformer = PerVariableTransformer()
|
|
instance = KnapsackInstance(weights=[23., 26., 20., 18.],
|
|
prices=[505., 352., 458., 220.],
|
|
capacity=67.)
|
|
model = instance.to_model()
|
|
solver = pe.SolverFactory('gurobi')
|
|
solver.options["threads"] = 1
|
|
solver.solve(model)
|
|
|
|
var_split = transformer.split_variables(instance, model)
|
|
var_split_expected = {
|
|
"default": [
|
|
(model.x, 0),
|
|
(model.x, 1),
|
|
(model.x, 2),
|
|
(model.x, 3)
|
|
]
|
|
}
|
|
assert var_split == var_split_expected
|
|
var_index_pairs = [(model.x, i) for i in range(4)]
|
|
|
|
x_actual = transformer.transform_instance(instance, var_index_pairs)
|
|
x_expected = np.array([
|
|
[67., 21.75, 23., 505.],
|
|
[67., 21.75, 26., 352.],
|
|
[67., 21.75, 20., 458.],
|
|
[67., 21.75, 18., 220.],
|
|
])
|
|
assert x_expected.tolist() == np.round(x_actual, decimals=2).tolist()
|
|
|
|
solver.solve(model)
|
|
y_actual = transformer.transform_solution(var_index_pairs)
|
|
y_expected = np.array([
|
|
[0., 1.],
|
|
[1., 0.],
|
|
[0., 1.],
|
|
[0., 1.],
|
|
])
|
|
assert y_actual.tolist() == y_expected.tolist()
|
|
|
|
|
|
def test_transform_with_categories():
|
|
transformer = PerVariableTransformer()
|
|
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
|
|
prices=[505., 352., 458., 220.],
|
|
capacity=67.)
|
|
model = instance.to_model()
|
|
solver = pe.SolverFactory('gurobi')
|
|
solver.options["threads"] = 1
|
|
solver.solve(model)
|
|
|
|
var_split = transformer.split_variables(instance, model)
|
|
var_split_expected = {
|
|
0: [(model.x, 0)],
|
|
1: [(model.x, 1)],
|
|
2: [(model.x, 2)],
|
|
3: [(model.x, 3)],
|
|
}
|
|
assert var_split == var_split_expected
|
|
|
|
var_index_pairs = var_split[0]
|
|
x_actual = transformer.transform_instance(instance, var_index_pairs)
|
|
x_expected = np.array([
|
|
[23., 26., 20., 18., 505., 352., 458., 220.]
|
|
])
|
|
assert x_expected.tolist() == np.round(x_actual, decimals=2).tolist()
|
|
|
|
solver.solve(model)
|
|
|
|
y_actual = transformer.transform_solution(var_index_pairs)
|
|
y_expected = np.array([[0., 1.]])
|
|
assert y_actual.tolist() == y_expected.tolist()
|