You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/benchmark.py

85 lines
3.8 KiB

# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from .solvers import LearningSolver
import pandas as pd
class BenchmarkRunner:
def __init__(self, solvers):
assert isinstance(solvers, dict)
for solver in solvers.values():
assert isinstance(solver, LearningSolver)
self.solvers = solvers
self.results = None
def parallel_solve(self, instances, n_jobs=1, n_trials=1):
if self.results is None:
self.results = pd.DataFrame(columns=["Solver",
"Instance",
"Wallclock Time",
"Lower Bound",
"Upper Bound",
"Gap",
"Nodes",
])
instances = instances * n_trials
for (name, solver) in self.solvers.items():
results = solver.parallel_solve(instances,
n_jobs=n_jobs,
label=name)
for i in range(len(instances)):
wallclock_time = None
for key in ["Time", "Wall time", "Wallclock time"]:
if key not in results[i]["Solver"][0].keys():
continue
if str(results[i]["Solver"][0][key]) == "<undefined>":
continue
wallclock_time = float(results[i]["Solver"][0][key])
nodes = results[i]["Solver"][0]["Nodes"]
lb = results[i]["Problem"][0]["Lower bound"]
ub = results[i]["Problem"][0]["Upper bound"]
gap = (ub - lb) / lb
self.results = self.results.append({
"Solver": name,
"Instance": i,
"Wallclock Time": wallclock_time,
"Lower Bound": lb,
"Upper Bound": ub,
"Gap": gap,
"Nodes": nodes,
}, ignore_index=True)
groups = self.results.groupby("Instance")
best_lower_bound = groups["Lower Bound"].transform("max")
best_upper_bound = groups["Upper Bound"].transform("min")
best_gap = groups["Gap"].transform("min")
best_nodes = groups["Nodes"].transform("min")
best_wallclock_time = groups["Wallclock Time"].transform("min")
self.results["Relative Lower Bound"] = \
self.results["Lower Bound"] / best_lower_bound
self.results["Relative Upper Bound"] = \
self.results["Upper Bound"] / best_upper_bound
self.results["Relative Wallclock Time"] = \
self.results["Wallclock Time"] / best_wallclock_time
self.results["Relative Gap"] = \
self.results["Gap"] / best_gap
self.results["Relative Nodes"] = \
self.results["Nodes"] / best_nodes
def raw_results(self):
return self.results
def save_results(self, filename):
self.results.to_csv(filename)
def load_results(self, filename):
self.results = pd.read_csv(filename, index_col=0)
def load_state(self, filename):
for (name, solver) in self.solvers.items():
solver.load_state(filename)
def fit(self):
for (name, solver) in self.solvers.items():
solver.fit()