You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
289 lines
11 KiB
289 lines
11 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
from typing import Union, Dict, Callable, List, Hashable, Optional, Any, TYPE_CHECKING
|
|
|
|
import numpy as np
|
|
from tqdm.auto import tqdm
|
|
|
|
from miplearn.classifiers import Classifier
|
|
from miplearn.classifiers.adaptive import AdaptiveClassifier
|
|
from miplearn.classifiers.threshold import MinPrecisionThreshold, Threshold
|
|
from miplearn.components import classifier_evaluation_dict
|
|
from miplearn.components.component import Component
|
|
from miplearn.extractors import InstanceIterator
|
|
from miplearn.instance import Instance
|
|
from miplearn.types import TrainingSample, VarIndex, Solution, LearningSolveStats
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
if TYPE_CHECKING:
|
|
from miplearn.solvers.learning import LearningSolver
|
|
|
|
|
|
class PrimalSolutionComponent(Component):
|
|
"""
|
|
A component that predicts the optimal primal values for the binary decision
|
|
variables.
|
|
|
|
In exact mode, predicted primal solutions are provided to the solver as MIP
|
|
starts. In heuristic mode, this component fixes the decision variables to their
|
|
predicted values.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
classifier: Callable[[], Classifier] = lambda: AdaptiveClassifier(),
|
|
mode: str = "exact",
|
|
threshold: Callable[[], Threshold] = lambda: MinPrecisionThreshold(
|
|
[0.98, 0.98]
|
|
),
|
|
) -> None:
|
|
assert mode in ["exact", "heuristic"]
|
|
self.mode = mode
|
|
self.classifiers: Dict[Hashable, Classifier] = {}
|
|
self.thresholds: Dict[Hashable, Threshold] = {}
|
|
self.threshold_factory = threshold
|
|
self.classifier_factory = classifier
|
|
self.stats: Dict[str, float] = {}
|
|
self._n_free = 0
|
|
self._n_zero = 0
|
|
self._n_one = 0
|
|
|
|
def before_solve_mip(self, solver, instance, model):
|
|
if len(self.thresholds) > 0:
|
|
logger.info("Predicting primal solution...")
|
|
solution = self.predict(instance)
|
|
|
|
# Collect prediction statistics
|
|
self._n_free = 0
|
|
self._n_zero = 0
|
|
self._n_one = 0
|
|
for (var, var_dict) in solution.items():
|
|
for (idx, value) in var_dict.items():
|
|
if value is None:
|
|
self._n_free += 1
|
|
else:
|
|
if value < 0.5:
|
|
self._n_zero += 1
|
|
else:
|
|
self._n_one += 1
|
|
|
|
# Provide solution to the solver
|
|
if self.mode == "heuristic":
|
|
solver.internal_solver.fix(solution)
|
|
else:
|
|
solver.internal_solver.set_warm_start(solution)
|
|
|
|
def after_solve_mip(
|
|
self,
|
|
solver: "LearningSolver",
|
|
instance: Instance,
|
|
model: Any,
|
|
stats: LearningSolveStats,
|
|
training_data: TrainingSample,
|
|
) -> None:
|
|
stats["Primal: free"] = self._n_free
|
|
stats["Primal: zero"] = self._n_zero
|
|
stats["Primal: one"] = self._n_one
|
|
|
|
def x(
|
|
self,
|
|
instances: Union[List[str], List[Instance]],
|
|
) -> Dict[Hashable, np.ndarray]:
|
|
return self._build_x_y_dict(instances, self._extract_variable_features)
|
|
|
|
def y(
|
|
self,
|
|
instances: Union[List[str], List[Instance]],
|
|
) -> Dict[Hashable, np.ndarray]:
|
|
return self._build_x_y_dict(instances, self._extract_variable_labels)
|
|
|
|
def fit(
|
|
self,
|
|
training_instances: Union[List[str], List[Instance]],
|
|
n_jobs: int = 1,
|
|
) -> None:
|
|
x = self.x(training_instances)
|
|
y = self.y(training_instances)
|
|
for category in x.keys():
|
|
clf = self.classifier_factory()
|
|
thr = self.threshold_factory()
|
|
clf.fit(x[category], y[category])
|
|
thr.fit(clf, x[category], y[category])
|
|
self.classifiers[category] = clf
|
|
self.thresholds[category] = thr
|
|
|
|
def predict(self, instance: Instance) -> Solution:
|
|
assert len(instance.training_data) > 0
|
|
sample = instance.training_data[-1]
|
|
assert "LP solution" in sample
|
|
lp_solution = sample["LP solution"]
|
|
assert lp_solution is not None
|
|
|
|
# Initialize empty solution
|
|
solution: Solution = {}
|
|
for (var_name, var_dict) in lp_solution.items():
|
|
solution[var_name] = {}
|
|
for (idx, lp_value) in var_dict.items():
|
|
solution[var_name][idx] = None
|
|
|
|
# Compute y_pred
|
|
x = self.x([instance])
|
|
y_pred = {}
|
|
for category in x.keys():
|
|
assert category in self.classifiers, (
|
|
f"Classifier for category {category} has not been trained. "
|
|
f"Please call component.fit before component.predict."
|
|
)
|
|
proba = self.classifiers[category].predict_proba(x[category])
|
|
thr = self.thresholds[category].predict(x[category])
|
|
y_pred[category] = np.vstack(
|
|
[
|
|
proba[:, 0] > thr[0],
|
|
proba[:, 1] > thr[1],
|
|
]
|
|
).T
|
|
|
|
# Convert y_pred into solution
|
|
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
|
for (var_name, var_dict) in lp_solution.items():
|
|
for (idx, lp_value) in var_dict.items():
|
|
category = instance.get_variable_category(var_name, idx)
|
|
offset = category_offset[category]
|
|
category_offset[category] += 1
|
|
if y_pred[category][offset, 0]:
|
|
solution[var_name][idx] = 0.0
|
|
if y_pred[category][offset, 1]:
|
|
solution[var_name][idx] = 1.0
|
|
|
|
return solution
|
|
|
|
def evaluate(self, instances):
|
|
ev = {"Fix zero": {}, "Fix one": {}}
|
|
for instance_idx in tqdm(
|
|
range(len(instances)),
|
|
desc="Evaluate (primal)",
|
|
):
|
|
instance = instances[instance_idx]
|
|
solution_actual = instance.training_data[0]["Solution"]
|
|
solution_pred = self.predict(instance)
|
|
|
|
vars_all, vars_one, vars_zero = set(), set(), set()
|
|
pred_one_positive, pred_zero_positive = set(), set()
|
|
for (varname, var_dict) in solution_actual.items():
|
|
if varname not in solution_pred.keys():
|
|
continue
|
|
for (idx, value) in var_dict.items():
|
|
vars_all.add((varname, idx))
|
|
if value > 0.5:
|
|
vars_one.add((varname, idx))
|
|
else:
|
|
vars_zero.add((varname, idx))
|
|
if solution_pred[varname][idx] is not None:
|
|
if solution_pred[varname][idx] > 0.5:
|
|
pred_one_positive.add((varname, idx))
|
|
else:
|
|
pred_zero_positive.add((varname, idx))
|
|
pred_one_negative = vars_all - pred_one_positive
|
|
pred_zero_negative = vars_all - pred_zero_positive
|
|
|
|
tp_zero = len(pred_zero_positive & vars_zero)
|
|
fp_zero = len(pred_zero_positive & vars_one)
|
|
tn_zero = len(pred_zero_negative & vars_one)
|
|
fn_zero = len(pred_zero_negative & vars_zero)
|
|
|
|
tp_one = len(pred_one_positive & vars_one)
|
|
fp_one = len(pred_one_positive & vars_zero)
|
|
tn_one = len(pred_one_negative & vars_zero)
|
|
fn_one = len(pred_one_negative & vars_one)
|
|
|
|
ev["Fix zero"][instance_idx] = classifier_evaluation_dict(
|
|
tp_zero, tn_zero, fp_zero, fn_zero
|
|
)
|
|
ev["Fix one"][instance_idx] = classifier_evaluation_dict(
|
|
tp_one, tn_one, fp_one, fn_one
|
|
)
|
|
return ev
|
|
|
|
@staticmethod
|
|
def _build_x_y_dict(
|
|
instances: Union[List[str], List[Instance]],
|
|
extract: Callable[
|
|
[
|
|
Instance,
|
|
TrainingSample,
|
|
str,
|
|
VarIndex,
|
|
Optional[float],
|
|
],
|
|
Union[List[bool], List[float]],
|
|
],
|
|
) -> Dict[Hashable, np.ndarray]:
|
|
result: Dict[Hashable, List] = {}
|
|
for instance in InstanceIterator(instances):
|
|
assert isinstance(instance, Instance)
|
|
for sample in instance.training_data:
|
|
# Skip training samples without solution
|
|
if "LP solution" not in sample:
|
|
continue
|
|
if sample["LP solution"] is None:
|
|
continue
|
|
|
|
# Iterate over all variables
|
|
for (var, var_dict) in sample["LP solution"].items():
|
|
for (idx, lp_value) in var_dict.items():
|
|
category = instance.get_variable_category(var, idx)
|
|
if category is None:
|
|
continue
|
|
if category not in result:
|
|
result[category] = []
|
|
result[category] += [
|
|
extract(
|
|
instance,
|
|
sample,
|
|
var,
|
|
idx,
|
|
lp_value,
|
|
)
|
|
]
|
|
|
|
# Convert result to numpy arrays and return
|
|
return {c: np.array(ft) for (c, ft) in result.items()}
|
|
|
|
@staticmethod
|
|
def _extract_variable_features(
|
|
instance: Instance,
|
|
sample: TrainingSample,
|
|
var: str,
|
|
idx: VarIndex,
|
|
lp_value: Optional[float],
|
|
) -> Union[List[bool], List[float]]:
|
|
features = instance.get_variable_features(var, idx)
|
|
if lp_value is None:
|
|
return features
|
|
else:
|
|
return features + [lp_value]
|
|
|
|
@staticmethod
|
|
def _extract_variable_labels(
|
|
instance: Instance,
|
|
sample: TrainingSample,
|
|
var: str,
|
|
idx: VarIndex,
|
|
lp_value: Optional[float],
|
|
) -> Union[List[bool], List[float]]:
|
|
assert "Solution" in sample
|
|
solution = sample["Solution"]
|
|
assert solution is not None
|
|
opt_value = solution[var][idx]
|
|
assert opt_value is not None
|
|
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
|
|
f"Variable {var} has non-binary value {opt_value} in the optimal solution. "
|
|
f"Predicting values of non-binary variables is not currently supported. "
|
|
f"Please set its category to None."
|
|
)
|
|
return [opt_value < 0.5, opt_value > 0.5]
|