You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/test_features.py

140 lines
4.4 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from miplearn.features import (
FeaturesExtractor,
InstanceFeatures,
Variable,
Constraint,
)
from miplearn.solvers.gurobi import GurobiSolver
from miplearn.solvers.tests import assert_equals, _round_variables, _round_constraints
inf = float("inf")
def test_knapsack() -> None:
solver = GurobiSolver()
instance = solver.build_test_instance_knapsack()
model = instance.to_model()
solver.set_instance(instance, model)
solver.solve_lp()
features = FeaturesExtractor(solver).extract(instance)
assert features.variables is not None
assert features.constraints is not None
assert features.instance is not None
assert_equals(
_round_variables(features.variables),
{
"x[0]": Variable(
basis_status="U",
category="default",
lower_bound=0.0,
obj_coeff=505.0,
reduced_cost=193.615385,
sa_lb_down=-inf,
sa_lb_up=1.0,
sa_obj_down=311.384615,
sa_obj_up=inf,
sa_ub_down=0.913043,
sa_ub_up=2.043478,
type="C",
upper_bound=1.0,
user_features=[23.0, 505.0],
value=1.0,
alvarez_2017=[1.0, 0.32899, 0.0, 0.0, 1.0, 1.0, 5.265874, 46.051702],
),
"x[1]": Variable(
basis_status="B",
category="default",
lower_bound=0.0,
obj_coeff=352.0,
reduced_cost=0.0,
sa_lb_down=-inf,
sa_lb_up=0.923077,
sa_obj_down=317.777778,
sa_obj_up=570.869565,
sa_ub_down=0.923077,
sa_ub_up=inf,
type="C",
upper_bound=1.0,
user_features=[26.0, 352.0],
value=0.923077,
alvarez_2017=[
1.0,
0.229316,
0.0,
0.076923,
1.0,
1.0,
3.532875,
5.388476,
],
),
"x[2]": Variable(
basis_status="U",
category="default",
lower_bound=0.0,
obj_coeff=458.0,
reduced_cost=187.230769,
sa_lb_down=-inf,
sa_lb_up=1.0,
sa_obj_down=270.769231,
sa_obj_up=inf,
sa_ub_down=0.9,
sa_ub_up=2.2,
type="C",
upper_bound=1.0,
user_features=[20.0, 458.0],
value=1.0,
alvarez_2017=[1.0, 0.298371, 0.0, 0.0, 1.0, 1.0, 5.232342, 46.051702],
),
"x[3]": Variable(
basis_status="L",
category="default",
lower_bound=0.0,
obj_coeff=220.0,
reduced_cost=-23.692308,
sa_lb_down=-0.111111,
sa_lb_up=1.0,
sa_obj_down=-inf,
sa_obj_up=243.692308,
sa_ub_down=0.0,
sa_ub_up=inf,
type="C",
upper_bound=1.0,
user_features=[18.0, 220.0],
value=0.0,
alvarez_2017=[1.0, 0.143322, 0.0, 0.0, 1.0, -1.0, 46.051702, 3.16515],
),
},
)
assert_equals(
_round_constraints(features.constraints),
{
"eq_capacity": Constraint(
basis_status="N",
category="eq_capacity",
dual_value=13.538462,
lazy=False,
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
rhs=67.0,
sa_rhs_down=43.0,
sa_rhs_up=69.0,
sense="<",
slack=0.0,
user_features=[0.0],
)
},
)
assert_equals(
features.instance,
InstanceFeatures(
user_features=[67.0, 21.75],
lazy_constraint_count=0,
),
)