You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
63 lines
2.1 KiB
63 lines
2.1 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from typing import List, Dict, Any
|
|
from unittest.mock import Mock
|
|
|
|
from sklearn.dummy import DummyClassifier
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
|
|
from miplearn.components.lazy.mem import MemorizingLazyConstrComponent
|
|
from miplearn.extractors.abstract import FeaturesExtractor
|
|
from miplearn.problems.tsp import build_tsp_model
|
|
from miplearn.solvers.learning import LearningSolver
|
|
|
|
|
|
def test_mem_component(
|
|
tsp_h5: List[str],
|
|
default_extractor: FeaturesExtractor,
|
|
) -> None:
|
|
clf = Mock(wraps=DummyClassifier())
|
|
comp = MemorizingLazyConstrComponent(clf=clf, extractor=default_extractor)
|
|
comp.fit(tsp_h5)
|
|
|
|
# Should call fit method with correct arguments
|
|
clf.fit.assert_called()
|
|
x, y = clf.fit.call_args.args
|
|
assert x.shape == (3, 190)
|
|
assert y.tolist() == [
|
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0],
|
|
[1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1],
|
|
]
|
|
|
|
# Should store violations
|
|
assert comp.constrs_ is not None
|
|
assert comp.n_features_ == 190
|
|
assert comp.n_targets_ == 22
|
|
assert len(comp.constrs_) == 22
|
|
|
|
# Call before-mip
|
|
stats: Dict[str, Any] = {}
|
|
model = Mock()
|
|
comp.before_mip(tsp_h5[0], model, stats)
|
|
|
|
# Should call predict with correct args
|
|
clf.predict.assert_called()
|
|
(x_test,) = clf.predict.call_args.args
|
|
assert x_test.shape == (1, 190)
|
|
|
|
|
|
def test_usage_tsp(
|
|
tsp_h5: List[str],
|
|
default_extractor: FeaturesExtractor,
|
|
) -> None:
|
|
# Should not crash
|
|
data_filenames = [f.replace(".h5", ".pkl.gz") for f in tsp_h5]
|
|
clf = KNeighborsClassifier(n_neighbors=1)
|
|
comp = MemorizingLazyConstrComponent(clf=clf, extractor=default_extractor)
|
|
solver = LearningSolver(components=[comp])
|
|
solver.fit(data_filenames)
|
|
solver.optimize(data_filenames[0], build_tsp_model)
|