You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/features.py

182 lines
6.7 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import collections
import numbers
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, Optional, Set, List, Hashable
from miplearn.types import Solution, VariableName, Category
import numpy as np
if TYPE_CHECKING:
from miplearn.solvers.internal import InternalSolver
from miplearn.instance.base import Instance
@dataclass
class TrainingSample:
lp_log: Optional[str] = None
lp_solution: Optional[Solution] = None
lp_value: Optional[float] = None
lazy_enforced: Optional[Set[Hashable]] = None
lower_bound: Optional[float] = None
mip_log: Optional[str] = None
solution: Optional[Solution] = None
upper_bound: Optional[float] = None
slacks: Optional[Dict[str, float]] = None
user_cuts_enforced: Optional[Set[Hashable]] = None
@dataclass
class InstanceFeatures:
user_features: Optional[List[float]] = None
lazy_constraint_count: int = 0
@dataclass
class Variable:
basis_status: Optional[str] = None
category: Optional[Hashable] = None
lower_bound: Optional[float] = None
obj_coeff: Optional[float] = None
reduced_cost: Optional[float] = None
sa_lb_down: Optional[float] = None
sa_lb_up: Optional[float] = None
sa_obj_down: Optional[float] = None
sa_obj_up: Optional[float] = None
sa_ub_down: Optional[float] = None
sa_ub_up: Optional[float] = None
type: Optional[str] = None
upper_bound: Optional[float] = None
user_features: Optional[List[float]] = None
value: Optional[float] = None
@dataclass
class Constraint:
basis_status: Optional[str] = None
category: Optional[Hashable] = None
dual_value: Optional[float] = None
lazy: bool = False
lhs: Dict[str, float] = lambda: {} # type: ignore
rhs: float = 0.0
sa_rhs_down: Optional[float] = None
sa_rhs_up: Optional[float] = None
sense: str = "<"
slack: Optional[float] = None
user_features: Optional[List[float]] = None
@dataclass
class Features:
instance: Optional[InstanceFeatures] = None
variables: Optional[Dict[str, Variable]] = None
constraints: Optional[Dict[str, Constraint]] = None
class FeaturesExtractor:
def __init__(
self,
internal_solver: "InternalSolver",
) -> None:
self.solver = internal_solver
def extract(self, instance: "Instance") -> None:
instance.features.variables = self._extract_variables(instance)
instance.features.constraints = self._extract_constraints(instance)
instance.features.instance = self._extract_instance(instance, instance.features)
def _extract_variables(
self,
instance: "Instance",
) -> Dict[VariableName, Variable]:
result: Dict[VariableName, Variable] = {}
for var_name in self.solver.get_variable_names():
user_features: Optional[List[float]] = None
category: Category = instance.get_variable_category(var_name)
if category is not None:
assert isinstance(category, collections.Hashable), (
f"Variable category must be be hashable. "
f"Found {type(category).__name__} instead for var={var_name}."
)
user_features = instance.get_variable_features(var_name)
if isinstance(user_features, np.ndarray):
user_features = user_features.tolist()
assert isinstance(user_features, list), (
f"Variable features must be a list. "
f"Found {type(user_features).__name__} instead for "
f"var={var_name}."
)
for v in user_features:
assert isinstance(v, numbers.Real), (
f"Variable features must be a list of numbers. "
f"Found {type(v).__name__} instead "
f"for var={var_name}."
)
result[var_name] = Variable(
category=category,
user_features=user_features,
)
return result
def _extract_constraints(
self,
instance: "Instance",
) -> Dict[str, Constraint]:
has_static_lazy = instance.has_static_lazy_constraints()
constraints = self.solver.get_constraints()
for (cid, constr) in constraints.items():
user_features = None
category = instance.get_constraint_category(cid)
if category is not None:
assert isinstance(category, collections.Hashable), (
f"Constraint category must be hashable. "
f"Found {type(category).__name__} instead for cid={cid}.",
)
user_features = instance.get_constraint_features(cid)
if isinstance(user_features, np.ndarray):
user_features = user_features.tolist()
assert isinstance(user_features, list), (
f"Constraint features must be a list. "
f"Found {type(user_features).__name__} instead for cid={cid}."
)
assert isinstance(user_features[0], float), (
f"Constraint features must be a list of floats. "
f"Found {type(user_features[0]).__name__} instead for cid={cid}."
)
constraints[cid].category = category
constraints[cid].user_features = user_features
if has_static_lazy:
constraints[cid].lazy = instance.is_constraint_lazy(cid)
return constraints
@staticmethod
def _extract_instance(
instance: "Instance",
features: Features,
) -> InstanceFeatures:
assert features.constraints is not None
user_features = instance.get_instance_features()
if isinstance(user_features, np.ndarray):
user_features = user_features.tolist()
assert isinstance(user_features, list), (
f"Instance features must be a list. "
f"Found {type(user_features).__name__} instead."
)
for v in user_features:
assert isinstance(v, numbers.Real), (
f"Instance features must be a list of numbers. "
f"Found {type(v).__name__} instead."
)
lazy_count = 0
for (cid, cdict) in features.constraints.items():
if cdict.lazy:
lazy_count += 1
return InstanceFeatures(
user_features=user_features,
lazy_constraint_count=lazy_count,
)