You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
399 lines
12 KiB
399 lines
12 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from typing import Any, Dict
|
|
|
|
from miplearn.features import Constraint, Variable
|
|
from miplearn.solvers.internal import InternalSolver
|
|
|
|
inf = float("inf")
|
|
|
|
# NOTE:
|
|
# This file is in the main source folder, so that it can be called from Julia.
|
|
|
|
|
|
def _round_constraints(constraints: Dict[str, Constraint]) -> Dict[str, Constraint]:
|
|
for (cname, c) in constraints.items():
|
|
for attr in ["slack", "dual_value"]:
|
|
if getattr(c, attr) is not None:
|
|
setattr(c, attr, round(getattr(c, attr), 6))
|
|
return constraints
|
|
|
|
|
|
def _round_variables(vars: Dict[str, Variable]) -> Dict[str, Variable]:
|
|
for (cname, c) in vars.items():
|
|
for attr in [
|
|
"upper_bound",
|
|
"lower_bound",
|
|
"obj_coeff",
|
|
"value",
|
|
"reduced_cost",
|
|
"sa_obj_up",
|
|
"sa_obj_down",
|
|
"sa_ub_up",
|
|
"sa_ub_down",
|
|
"sa_lb_up",
|
|
"sa_lb_down",
|
|
]:
|
|
if getattr(c, attr) is not None:
|
|
setattr(c, attr, round(getattr(c, attr), 6))
|
|
return vars
|
|
|
|
|
|
def _remove_unsupported_constr_attrs(
|
|
solver: InternalSolver,
|
|
constraints: Dict[str, Constraint],
|
|
) -> Dict[str, Constraint]:
|
|
for (cname, c) in constraints.items():
|
|
to_remove = []
|
|
for k in c.__dict__.keys():
|
|
if k not in solver.get_constraint_attrs():
|
|
to_remove.append(k)
|
|
for k in to_remove:
|
|
setattr(c, k, None)
|
|
return constraints
|
|
|
|
|
|
def _remove_unsupported_var_attrs(
|
|
solver: InternalSolver,
|
|
variables: Dict[str, Variable],
|
|
) -> Dict[str, Variable]:
|
|
for (cname, c) in variables.items():
|
|
to_remove = []
|
|
for k in c.__dict__.keys():
|
|
if k not in solver.get_variable_attrs():
|
|
to_remove.append(k)
|
|
for k in to_remove:
|
|
setattr(c, k, None)
|
|
return variables
|
|
|
|
|
|
def run_internal_solver_tests(solver: InternalSolver) -> None:
|
|
run_basic_usage_tests(solver.clone())
|
|
run_warm_start_tests(solver.clone())
|
|
run_infeasibility_tests(solver.clone())
|
|
run_iteration_cb_tests(solver.clone())
|
|
if solver.are_callbacks_supported():
|
|
run_lazy_cb_tests(solver.clone())
|
|
|
|
|
|
def run_basic_usage_tests(solver: InternalSolver) -> None:
|
|
# Create and set instance
|
|
instance = solver.build_test_instance_knapsack()
|
|
model = instance.to_model()
|
|
solver.set_instance(instance, model)
|
|
|
|
# Fetch variables (after-load)
|
|
assert_equals(
|
|
_round_variables(solver.get_variables()),
|
|
_remove_unsupported_var_attrs(
|
|
solver,
|
|
{
|
|
"x[0]": Variable(
|
|
lower_bound=0.0,
|
|
obj_coeff=505.0,
|
|
type="B",
|
|
upper_bound=1.0,
|
|
),
|
|
"x[1]": Variable(
|
|
lower_bound=0.0,
|
|
obj_coeff=352.0,
|
|
type="B",
|
|
upper_bound=1.0,
|
|
),
|
|
"x[2]": Variable(
|
|
lower_bound=0.0,
|
|
obj_coeff=458.0,
|
|
type="B",
|
|
upper_bound=1.0,
|
|
),
|
|
"x[3]": Variable(
|
|
lower_bound=0.0,
|
|
obj_coeff=220.0,
|
|
type="B",
|
|
upper_bound=1.0,
|
|
),
|
|
},
|
|
),
|
|
)
|
|
|
|
# Fetch constraints (after-load)
|
|
assert_equals(
|
|
_round_constraints(solver.get_constraints()),
|
|
{
|
|
"eq_capacity": Constraint(
|
|
lazy=False,
|
|
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
|
|
rhs=67.0,
|
|
sense="<",
|
|
)
|
|
},
|
|
)
|
|
|
|
# Solve linear programming relaxation
|
|
lp_stats = solver.solve_lp()
|
|
assert not solver.is_infeasible()
|
|
assert lp_stats["LP value"] is not None
|
|
assert_equals(round(lp_stats["LP value"], 3), 1287.923)
|
|
assert len(lp_stats["LP log"]) > 100
|
|
|
|
# Fetch variables (after-load)
|
|
assert_equals(
|
|
_round_variables(solver.get_variables()),
|
|
_remove_unsupported_var_attrs(
|
|
solver,
|
|
{
|
|
"x[0]": Variable(
|
|
basis_status="U",
|
|
lower_bound=0.0,
|
|
obj_coeff=505.0,
|
|
reduced_cost=193.615385,
|
|
sa_lb_down=-inf,
|
|
sa_lb_up=1.0,
|
|
sa_obj_down=311.384615,
|
|
sa_obj_up=inf,
|
|
sa_ub_down=0.913043,
|
|
sa_ub_up=2.043478,
|
|
type="C",
|
|
upper_bound=1.0,
|
|
value=1.0,
|
|
),
|
|
"x[1]": Variable(
|
|
basis_status="B",
|
|
lower_bound=0.0,
|
|
obj_coeff=352.0,
|
|
reduced_cost=0.0,
|
|
sa_lb_down=-inf,
|
|
sa_lb_up=0.923077,
|
|
sa_obj_down=317.777778,
|
|
sa_obj_up=570.869565,
|
|
sa_ub_down=0.923077,
|
|
sa_ub_up=inf,
|
|
type="C",
|
|
upper_bound=1.0,
|
|
value=0.923077,
|
|
),
|
|
"x[2]": Variable(
|
|
basis_status="U",
|
|
lower_bound=0.0,
|
|
obj_coeff=458.0,
|
|
reduced_cost=187.230769,
|
|
sa_lb_down=-inf,
|
|
sa_lb_up=1.0,
|
|
sa_obj_down=270.769231,
|
|
sa_obj_up=inf,
|
|
sa_ub_down=0.9,
|
|
sa_ub_up=2.2,
|
|
type="C",
|
|
upper_bound=1.0,
|
|
value=1.0,
|
|
),
|
|
"x[3]": Variable(
|
|
basis_status="L",
|
|
lower_bound=0.0,
|
|
obj_coeff=220.0,
|
|
reduced_cost=-23.692308,
|
|
sa_lb_down=-0.111111,
|
|
sa_lb_up=1.0,
|
|
sa_obj_down=-inf,
|
|
sa_obj_up=243.692308,
|
|
sa_ub_down=0.0,
|
|
sa_ub_up=inf,
|
|
type="C",
|
|
upper_bound=1.0,
|
|
value=0.0,
|
|
),
|
|
},
|
|
),
|
|
)
|
|
|
|
# Fetch constraints (after-lp)
|
|
assert_equals(
|
|
_round_constraints(solver.get_constraints()),
|
|
_remove_unsupported_constr_attrs(
|
|
solver,
|
|
{
|
|
"eq_capacity": Constraint(
|
|
lazy=False,
|
|
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
|
|
rhs=67.0,
|
|
sense="<",
|
|
slack=0.0,
|
|
dual_value=13.538462,
|
|
sa_rhs_down=43.0,
|
|
sa_rhs_up=69.0,
|
|
basis_status="N",
|
|
)
|
|
},
|
|
),
|
|
)
|
|
|
|
# Solve MIP
|
|
mip_stats = solver.solve(
|
|
tee=True,
|
|
iteration_cb=None,
|
|
lazy_cb=None,
|
|
user_cut_cb=None,
|
|
)
|
|
assert not solver.is_infeasible()
|
|
assert len(mip_stats["MIP log"]) > 100
|
|
assert_equals(mip_stats["Lower bound"], 1183.0)
|
|
assert_equals(mip_stats["Upper bound"], 1183.0)
|
|
assert_equals(mip_stats["Sense"], "max")
|
|
assert isinstance(mip_stats["Wallclock time"], float)
|
|
|
|
# Fetch variables (after-load)
|
|
assert_equals(
|
|
_round_variables(solver.get_variables()),
|
|
_remove_unsupported_var_attrs(
|
|
solver,
|
|
{
|
|
"x[0]": Variable(
|
|
lower_bound=0.0,
|
|
obj_coeff=505.0,
|
|
type="B",
|
|
upper_bound=1.0,
|
|
value=1.0,
|
|
),
|
|
"x[1]": Variable(
|
|
lower_bound=0.0,
|
|
obj_coeff=352.0,
|
|
type="B",
|
|
upper_bound=1.0,
|
|
value=0.0,
|
|
),
|
|
"x[2]": Variable(
|
|
lower_bound=0.0,
|
|
obj_coeff=458.0,
|
|
type="B",
|
|
upper_bound=1.0,
|
|
value=1.0,
|
|
),
|
|
"x[3]": Variable(
|
|
lower_bound=0.0,
|
|
obj_coeff=220.0,
|
|
type="B",
|
|
upper_bound=1.0,
|
|
value=1.0,
|
|
),
|
|
},
|
|
),
|
|
)
|
|
|
|
# Fetch constraints (after-mip)
|
|
assert_equals(
|
|
_round_constraints(solver.get_constraints()),
|
|
{
|
|
"eq_capacity": Constraint(
|
|
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
|
|
rhs=67.0,
|
|
sense="<",
|
|
slack=6.0,
|
|
),
|
|
},
|
|
)
|
|
|
|
# Build a new constraint
|
|
cut = Constraint(lhs={"x[0]": 1.0}, sense="<", rhs=0.0)
|
|
assert not solver.is_constraint_satisfied(cut)
|
|
|
|
# Add new constraint and verify that it is listed. Modifying the model should
|
|
# also clear the current solution.
|
|
solver.add_constraint(cut, "cut")
|
|
assert_equals(
|
|
_round_constraints(solver.get_constraints()),
|
|
{
|
|
"eq_capacity": Constraint(
|
|
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
|
|
rhs=67.0,
|
|
sense="<",
|
|
),
|
|
"cut": Constraint(
|
|
lhs={"x[0]": 1.0},
|
|
rhs=0.0,
|
|
sense="<",
|
|
),
|
|
},
|
|
)
|
|
|
|
# Re-solve MIP and verify that constraint affects the solution
|
|
stats = solver.solve()
|
|
assert_equals(stats["Lower bound"], 1030.0)
|
|
assert solver.is_constraint_satisfied(cut)
|
|
|
|
# Remove the new constraint
|
|
solver.remove_constraint("cut")
|
|
|
|
# New constraint should no longer affect solution
|
|
stats = solver.solve()
|
|
assert_equals(stats["Lower bound"], 1183.0)
|
|
|
|
|
|
def run_warm_start_tests(solver: InternalSolver) -> None:
|
|
instance = solver.build_test_instance_knapsack()
|
|
model = instance.to_model()
|
|
solver.set_instance(instance, model)
|
|
solver.set_warm_start({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
|
|
stats = solver.solve(tee=True)
|
|
if stats["Warm start value"] is not None:
|
|
assert_equals(stats["Warm start value"], 725.0)
|
|
|
|
solver.set_warm_start({"x[0]": 1.0, "x[1]": 1.0, "x[2]": 1.0, "x[3]": 1.0})
|
|
stats = solver.solve(tee=True)
|
|
assert stats["Warm start value"] is None
|
|
|
|
solver.fix({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
|
|
stats = solver.solve(tee=True)
|
|
assert_equals(stats["Lower bound"], 725.0)
|
|
assert_equals(stats["Upper bound"], 725.0)
|
|
|
|
|
|
def run_infeasibility_tests(solver: InternalSolver) -> None:
|
|
instance = solver.build_test_instance_infeasible()
|
|
solver.set_instance(instance)
|
|
mip_stats = solver.solve()
|
|
assert solver.is_infeasible()
|
|
assert solver.get_solution() is None
|
|
assert mip_stats["Upper bound"] is None
|
|
assert mip_stats["Lower bound"] is None
|
|
lp_stats = solver.solve_lp()
|
|
assert solver.get_solution() is None
|
|
assert lp_stats["LP value"] is None
|
|
|
|
|
|
def run_iteration_cb_tests(solver: InternalSolver) -> None:
|
|
instance = solver.build_test_instance_knapsack()
|
|
solver.set_instance(instance)
|
|
count = 0
|
|
|
|
def custom_iteration_cb() -> bool:
|
|
nonlocal count
|
|
count += 1
|
|
return count < 5
|
|
|
|
solver.solve(iteration_cb=custom_iteration_cb)
|
|
assert_equals(count, 5)
|
|
|
|
|
|
def run_lazy_cb_tests(solver: InternalSolver) -> None:
|
|
instance = solver.build_test_instance_knapsack()
|
|
model = instance.to_model()
|
|
|
|
def lazy_cb(cb_solver: InternalSolver, cb_model: Any) -> None:
|
|
relsol = cb_solver.get_solution()
|
|
assert relsol is not None
|
|
assert relsol["x[0]"] is not None
|
|
if relsol["x[0]"] > 0:
|
|
instance.enforce_lazy_constraint(cb_solver, cb_model, "cut")
|
|
|
|
solver.set_instance(instance, model)
|
|
solver.solve(lazy_cb=lazy_cb)
|
|
solution = solver.get_solution()
|
|
assert solution is not None
|
|
assert_equals(solution["x[0]"], 0.0)
|
|
|
|
|
|
def assert_equals(left: Any, right: Any) -> None:
|
|
assert left == right, f"{left} != {right}"
|