You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/solvers.py

208 lines
7.4 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from . import WarmStartComponent, BranchPriorityComponent
import pyomo.environ as pe
from pyomo.core import Var
from copy import deepcopy
import pickle
from scipy.stats import randint
from p_tqdm import p_map
import logging
logger = logging.getLogger(__name__)
class GurobiSolver:
def __init__(self):
self.solver = pe.SolverFactory('gurobi_persistent')
self.solver.options["Seed"] = randint(low=0, high=1000).rvs()
def set_threads(self, threads):
self.solver.options["Threads"] = threads
def set_time_limit(self, time_limit):
self.solver.options["TimeLimit"] = time_limit
def set_gap_tolerance(self, gap_tolerance):
self.solver.options["MIPGap"] = gap_tolerance
def solve(self, model, tee=False, warmstart=False):
self.solver.set_instance(model)
results = self.solver.solve(tee=tee, warmstart=warmstart)
return {
"Lower bound": results["Problem"][0]["Lower bound"],
"Upper bound": results["Problem"][0]["Upper bound"],
"Wallclock time": results["Solver"][0]["Wallclock time"],
"Nodes": self.solver._solver_model.getAttr("NodeCount"),
}
class CPLEXSolver:
def __init__(self):
self.solver = pe.SolverFactory('cplex_persistent')
self.solver.options["randomseed"] = randint(low=0, high=1000).rvs()
def set_threads(self, threads):
self.solver.options["threads"] = threads
def set_time_limit(self, time_limit):
self.solver.options["timelimit"] = time_limit
def set_gap_tolerance(self, gap_tolerance):
self.solver.options["mip_tolerances_mipgap"] = gap_tolerance
def solve(self, model, tee=False, warmstart=False):
self.solver.set_instance(model)
results = self.solver.solve(tee=tee, warmstart=warmstart)
print(results)
return {
"Lower bound": results["Problem"][0]["Lower bound"],
"Upper bound": results["Problem"][0]["Upper bound"],
"Wallclock time": results["Solver"][0]["Wallclock time"],
"Nodes": 1,
}
class LearningSolver:
"""
Mixed-Integer Linear Programming (MIP) solver that extracts information from previous runs,
using Machine Learning methods, to accelerate the solution of new (yet unseen) instances.
"""
def __init__(self,
components=None,
gap_tolerance=None,
mode="exact",
solver="cplex",
threads=4,
time_limit=None,
):
self.is_persistent = None
self.components = components
self.mode = mode
self.internal_solver = None
self.internal_solver_factory = solver
self.threads = threads
self.time_limit = time_limit
self.gap_tolerance = gap_tolerance
self.tee = False
if self.components is not None:
assert isinstance(self.components, dict)
else:
self.components = {
"warm-start": WarmStartComponent(),
}
assert self.mode in ["exact", "heuristic"]
for component in self.components.values():
component.mode = self.mode
def _create_internal_solver(self):
if self.internal_solver_factory == "cplex":
solver = CPLEXSolver()
elif self.internal_solver_factory == "gurobi":
solver = GurobiSolver()
else:
raise Exception("solver %s not supported" % solver_factory)
solver.set_threads(self.threads)
if self.time_limit is not None:
solver.set_time_limit(self.time_limit)
if self.gap_tolerance is not None:
solver.set_gap_tolerance(self.gap_tolerance)
return solver
def solve(self, instance, tee=False):
model = instance.to_model()
self.tee = tee
self.internal_solver = self._create_internal_solver()
for component in self.components.values():
component.before_solve(self, instance, model)
is_warm_start_available = False
if "warm-start" in self.components.keys():
if self.components["warm-start"].is_warm_start_available:
is_warm_start_available = True
results = self.internal_solver.solve(model,
tee=tee,
warmstart=is_warm_start_available)
instance.solution = {}
instance.lower_bound = results["Lower bound"]
instance.upper_bound = results["Upper bound"]
for var in model.component_objects(Var):
instance.solution[str(var)] = {}
for index in var:
instance.solution[str(var)][index] = var[index].value
for component in self.components.values():
component.after_solve(self, instance, model)
return results
def parallel_solve(self,
instances,
n_jobs=4,
label="Solve",
collect_training_data=True,
):
self.internal_solver = None
def _process(instance):
solver = deepcopy(self)
results = solver.solve(instance)
solver.internal_solver = None
if not collect_training_data:
solver.components = {}
return {
"Solver": solver,
"Results": results,
"Solution": instance.solution,
"Upper bound": instance.upper_bound,
"Lower bound": instance.lower_bound,
}
p_map_results = p_map(_process, instances, num_cpus=n_jobs, desc=label)
subsolvers = [p["Solver"] for p in p_map_results]
results = [p["Results"] for p in p_map_results]
for (idx, r) in enumerate(p_map_results):
instances[idx].solution = r["Solution"]
instances[idx].lower_bound = r["Lower bound"]
instances[idx].upper_bound = r["Upper bound"]
for (name, component) in self.components.items():
subcomponents = [subsolver.components[name]
for subsolver in subsolvers
if name in subsolver.components.keys()]
self.components[name].merge(subcomponents)
return results
def fit(self, n_jobs=1):
for component in self.components.values():
component.fit(self, n_jobs=n_jobs)
def save_state(self, filename):
with open(filename, "wb") as file:
pickle.dump({
"version": 2,
"components": self.components,
}, file)
def load_state(self, filename):
with open(filename, "rb") as file:
data = pickle.load(file)
assert data["version"] == 2
for (component_name, component) in data["components"].items():
if component_name not in self.components.keys():
continue
else:
self.components[component_name].merge([component])