You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
126 lines
4.2 KiB
126 lines
4.2 KiB
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
|
|
|
from .transformers import PerVariableTransformer
|
|
from .warmstart import WarmStartComponent
|
|
from .branching import BranchPriorityComponent
|
|
import pyomo.environ as pe
|
|
import numpy as np
|
|
from copy import deepcopy
|
|
import pickle
|
|
from tqdm import tqdm
|
|
from joblib import Parallel, delayed
|
|
from scipy.stats import randint
|
|
import multiprocessing
|
|
|
|
|
|
def _gurobi_factory():
|
|
solver = pe.SolverFactory('gurobi_persistent')
|
|
solver.options["threads"] = 4
|
|
solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
|
return solver
|
|
|
|
|
|
class LearningSolver:
|
|
"""
|
|
Mixed-Integer Linear Programming (MIP) solver that extracts information from previous runs,
|
|
using Machine Learning methods, to accelerate the solution of new (yet unseen) instances.
|
|
"""
|
|
|
|
def __init__(self,
|
|
threads=4,
|
|
internal_solver_factory=_gurobi_factory,
|
|
components=None,
|
|
mode=None):
|
|
self.is_persistent = None
|
|
self.internal_solver = None
|
|
self.components = components
|
|
self.internal_solver_factory = internal_solver_factory
|
|
|
|
if self.components is not None:
|
|
assert isinstance(self.components, dict)
|
|
else:
|
|
self.components = {
|
|
"warm-start": WarmStartComponent(),
|
|
#"branch-priority": BranchPriorityComponent(),
|
|
}
|
|
|
|
if mode is not None:
|
|
assert mode in ["exact", "heuristic"]
|
|
for component in self.components.values():
|
|
component.mode = mode
|
|
|
|
def _create_solver(self):
|
|
self.internal_solver = self.internal_solver_factory()
|
|
self.is_persistent = hasattr(self.internal_solver, "set_instance")
|
|
|
|
def _clear(self):
|
|
self.internal_solver = None
|
|
|
|
def solve(self, instance, tee=False):
|
|
model = instance.to_model()
|
|
|
|
self._create_solver()
|
|
if self.is_persistent:
|
|
self.internal_solver.set_instance(model)
|
|
|
|
for component in self.components.values():
|
|
component.before_solve(self, instance, model)
|
|
|
|
if self.is_persistent:
|
|
solve_results = self.internal_solver.solve(tee=tee, warmstart=True)
|
|
else:
|
|
solve_results = self.internal_solver.solve(model, tee=tee, warmstart=True)
|
|
|
|
solve_results["Solver"][0]["Nodes"] = self.internal_solver._solver_model.getAttr("NodeCount")
|
|
|
|
for component in self.components.values():
|
|
component.after_solve(self, instance, model)
|
|
|
|
return solve_results
|
|
|
|
def parallel_solve(self, instances, n_jobs=4, label="Solve"):
|
|
self._clear()
|
|
|
|
def _process(instance):
|
|
solver = deepcopy(self)
|
|
results = solver.solve(instance)
|
|
solver._clear()
|
|
return solver, results
|
|
|
|
solver_result_pairs = Parallel(n_jobs=n_jobs)(
|
|
delayed(_process)(instance)
|
|
for instance in tqdm(instances, desc=label, ncols=80)
|
|
)
|
|
|
|
solvers = [p[0] for p in solver_result_pairs]
|
|
results = [p[1] for p in solver_result_pairs]
|
|
|
|
for (name, component) in self.components.items():
|
|
for subsolver in solvers:
|
|
self.components[name].merge(subsolver.components[name])
|
|
|
|
return results
|
|
|
|
def fit(self):
|
|
for component in self.components.values():
|
|
component.fit(self)
|
|
|
|
def save_state(self, filename):
|
|
with open(filename, "wb") as file:
|
|
pickle.dump({
|
|
"version": 2,
|
|
"components": self.components,
|
|
}, file)
|
|
|
|
def load_state(self, filename):
|
|
with open(filename, "rb") as file:
|
|
data = pickle.load(file)
|
|
assert data["version"] == 2
|
|
for (component_name, component) in data["components"].items():
|
|
if component_name not in self.components.keys():
|
|
continue
|
|
else:
|
|
self.components[component_name].merge(component)
|