You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.0 KiB
67 lines
2.0 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import List, Union
|
|
|
|
import gurobipy as gp
|
|
import numpy as np
|
|
from gurobipy.gurobipy import GRB
|
|
from scipy.stats import uniform, randint
|
|
from scipy.stats.distributions import rv_frozen
|
|
|
|
from .setcover import SetCoverGenerator
|
|
from miplearn.solvers.gurobi import GurobiModel
|
|
from ..io import read_pkl_gz
|
|
|
|
|
|
@dataclass
|
|
class SetPackData:
|
|
costs: np.ndarray
|
|
incidence_matrix: np.ndarray
|
|
|
|
|
|
class SetPackGenerator:
|
|
def __init__(
|
|
self,
|
|
n_elements: rv_frozen = randint(low=50, high=51),
|
|
n_sets: rv_frozen = randint(low=100, high=101),
|
|
costs: rv_frozen = uniform(loc=0.0, scale=100.0),
|
|
costs_jitter: rv_frozen = uniform(loc=-5.0, scale=10.0),
|
|
K: rv_frozen = uniform(loc=25.0, scale=0.0),
|
|
density: rv_frozen = uniform(loc=0.02, scale=0.00),
|
|
fix_sets: bool = True,
|
|
) -> None:
|
|
self.gen = SetCoverGenerator(
|
|
n_elements=n_elements,
|
|
n_sets=n_sets,
|
|
costs=costs,
|
|
costs_jitter=costs_jitter,
|
|
K=K,
|
|
density=density,
|
|
fix_sets=fix_sets,
|
|
)
|
|
|
|
def generate(self, n_samples: int) -> List[SetPackData]:
|
|
return [
|
|
SetPackData(
|
|
s.costs,
|
|
s.incidence_matrix,
|
|
)
|
|
for s in self.gen.generate(n_samples)
|
|
]
|
|
|
|
|
|
def build_setpack_model_gurobipy(data: Union[str, SetPackData]) -> GurobiModel:
|
|
if isinstance(data, str):
|
|
data = read_pkl_gz(data)
|
|
assert isinstance(data, SetPackData)
|
|
(n_elements, n_sets) = data.incidence_matrix.shape
|
|
model = gp.Model()
|
|
x = model.addMVar(n_sets, vtype=GRB.BINARY, name="x")
|
|
model.addConstr(data.incidence_matrix @ x <= np.ones(n_elements))
|
|
model.setObjective(-data.costs @ x)
|
|
model.update()
|
|
return GurobiModel(model)
|