You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/solvers.py

132 lines
4.6 KiB

# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from .transformers import PerVariableTransformer
from .warmstart import WarmStartComponent
from .branching import BranchPriorityComponent
import pyomo.environ as pe
import numpy as np
from copy import deepcopy
import pickle
from tqdm import tqdm
from joblib import Parallel, delayed
from scipy.stats import randint
import multiprocessing
def _gurobi_factory():
solver = pe.SolverFactory('gurobi_persistent')
solver.options["threads"] = 4
solver.options["Seed"] = randint(low=0, high=1000).rvs()
return solver
class LearningSolver:
"""
Mixed-Integer Linear Programming (MIP) solver that extracts information from previous runs,
using Machine Learning methods, to accelerate the solution of new (yet unseen) instances.
"""
def __init__(self,
threads=4,
internal_solver_factory=_gurobi_factory,
components=None,
mode=None):
self.is_persistent = None
self.internal_solver = None
self.components = components
self.internal_solver_factory = internal_solver_factory
if self.components is not None:
assert isinstance(self.components, dict)
else:
self.components = {
"warm-start": WarmStartComponent(),
#"branch-priority": BranchPriorityComponent(),
}
if mode is not None:
assert mode in ["exact", "heuristic"]
for component in self.components.values():
component.mode = mode
def _create_solver(self):
self.internal_solver = self.internal_solver_factory()
self.is_persistent = hasattr(self.internal_solver, "set_instance")
def solve(self, instance, tee=False):
model = instance.to_model()
self._create_solver()
if self.is_persistent:
self.internal_solver.set_instance(model)
for component in self.components.values():
component.before_solve(self, instance, model)
if self.is_persistent:
solve_results = self.internal_solver.solve(tee=tee, warmstart=True)
else:
solve_results = self.internal_solver.solve(model, tee=tee, warmstart=True)
solve_results["Solver"][0]["Nodes"] = self.internal_solver._solver_model.getAttr("NodeCount")
for component in self.components.values():
component.after_solve(self, instance, model)
return solve_results
def parallel_solve(self,
instances,
n_jobs=4,
label="Solve",
collect_training_data=True,
):
self.internal_solver = None
def _process(instance):
solver = deepcopy(self)
results = solver.solve(instance)
solver.internal_solver = None
if not collect_training_data:
solver.components = {}
return solver, results
solver_result_pairs = Parallel(n_jobs=n_jobs)(
delayed(_process)(instance)
for instance in tqdm(instances, desc=label, ncols=80)
)
subsolvers = [p[0] for p in solver_result_pairs]
results = [p[1] for p in solver_result_pairs]
for (name, component) in self.components.items():
subcomponents = [subsolver.components[name]
for subsolver in subsolvers
if name in subsolver.components.keys()]
self.components[name].merge(subcomponents)
return results
def fit(self):
for component in self.components.values():
component.fit(self)
def save_state(self, filename):
with open(filename, "wb") as file:
pickle.dump({
"version": 2,
"components": self.components,
}, file)
def load_state(self, filename):
with open(filename, "rb") as file:
data = pickle.load(file)
assert data["version"] == 2
for (component_name, component) in data["components"].items():
if component_name not in self.components.keys():
continue
else:
self.components[component_name].merge([component])