You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/problems/test_tsp.py

101 lines
2.7 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import json
import numpy as np
from numpy.linalg import norm
from scipy.spatial.distance import pdist, squareform
from scipy.stats import uniform, randint
from miplearn.problems.tsp import TravelingSalesmanGenerator, TravelingSalesmanInstance
from miplearn.solvers.learning import LearningSolver
from miplearn.solvers.tests import assert_equals
def test_generator() -> None:
data = TravelingSalesmanGenerator(
x=uniform(loc=0.0, scale=1000.0),
y=uniform(loc=0.0, scale=1000.0),
n=randint(low=100, high=101),
gamma=uniform(loc=0.95, scale=0.1),
fix_cities=True,
).generate(100)
assert len(data) == 100
assert data[0].n_cities == 100
assert norm(data[0].distances - data[0].distances.T) < 1e-6
d = [d.distances[0, 1] for d in data]
assert np.std(d) > 0
def test_instance() -> None:
n_cities = 4
distances = np.array(
[
[0.0, 1.0, 2.0, 1.0],
[1.0, 0.0, 1.0, 2.0],
[2.0, 1.0, 0.0, 1.0],
[1.0, 2.0, 1.0, 0.0],
]
)
instance = TravelingSalesmanInstance(n_cities, distances)
solver = LearningSolver()
solver.solve(instance)
assert len(instance.get_samples()) == 1
sample = instance.get_samples()[0]
assert_equals(sample.get_array("mip_var_values"), [1.0, 0.0, 1.0, 1.0, 0.0, 1.0])
assert sample.get_scalar("mip_lower_bound") == 4.0
assert sample.get_scalar("mip_upper_bound") == 4.0
def test_subtour() -> None:
n_cities = 6
cities = np.array(
[
[0.0, 0.0],
[1.0, 0.0],
[2.0, 0.0],
[3.0, 0.0],
[0.0, 1.0],
[3.0, 1.0],
]
)
distances = squareform(pdist(cities))
instance = TravelingSalesmanInstance(n_cities, distances)
solver = LearningSolver()
solver.solve(instance)
samples = instance.get_samples()
assert len(samples) == 1
sample = samples[0]
lazy_encoded = sample.get_scalar("mip_constr_lazy")
assert lazy_encoded is not None
lazy = json.loads(lazy_encoded)
assert lazy == {
"st[0,1,4]": [0, 1, 4],
"st[2,3,5]": [2, 3, 5],
}
assert_equals(
sample.get_array("mip_var_values"),
[
1.0,
0.0,
0.0,
1.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
1.0,
],
)
solver.fit([instance])
solver.solve(instance)