You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/0.2/api/miplearn/components/cuts.html

386 lines
18 KiB

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="generator" content="pdoc 0.7.0" />
<title>miplearn.components.cuts API documentation</title>
<meta name="description" content="" />
<link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
<link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
<link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
<style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>miplearn.components.cuts</code></h1>
</header>
<section id="section-intro">
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python"># MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
import sys
from copy import deepcopy
from typing import Any, Dict
import numpy as np
from tqdm.auto import tqdm
from miplearn.classifiers import Classifier
from miplearn.classifiers.counting import CountingClassifier
from miplearn.components import classifier_evaluation_dict
from miplearn.components.component import Component
from miplearn.extractors import InstanceFeaturesExtractor
logger = logging.getLogger(__name__)
class UserCutsComponent(Component):
&#34;&#34;&#34;
A component that predicts which user cuts to enforce.
&#34;&#34;&#34;
def __init__(
self,
classifier: Classifier = CountingClassifier(),
threshold: float = 0.05,
):
self.threshold: float = threshold
self.classifier_prototype: Classifier = classifier
self.classifiers: Dict[Any, Classifier] = {}
def before_solve(self, solver, instance, model):
instance.found_violated_user_cuts = []
logger.info(&#34;Predicting violated user cuts...&#34;)
violations = self.predict(instance)
logger.info(&#34;Enforcing %d user cuts...&#34; % len(violations))
for v in violations:
cut = instance.build_user_cut(model, v)
solver.internal_solver.add_constraint(cut)
def after_solve(
self,
solver,
instance,
model,
results,
training_data,
):
pass
def fit(self, training_instances):
logger.debug(&#34;Fitting...&#34;)
features = InstanceFeaturesExtractor().extract(training_instances)
self.classifiers = {}
violation_to_instance_idx = {}
for (idx, instance) in enumerate(training_instances):
if not hasattr(instance, &#34;found_violated_user_cuts&#34;):
continue
for v in instance.found_violated_user_cuts:
if v not in self.classifiers:
self.classifiers[v] = deepcopy(self.classifier_prototype)
violation_to_instance_idx[v] = []
violation_to_instance_idx[v] += [idx]
for (v, classifier) in tqdm(
self.classifiers.items(),
desc=&#34;Fit (user cuts)&#34;,
disable=not sys.stdout.isatty(),
):
logger.debug(&#34;Training: %s&#34; % (str(v)))
label = np.zeros(len(training_instances))
label[violation_to_instance_idx[v]] = 1.0
classifier.fit(features, label)
def predict(self, instance):
violations = []
features = InstanceFeaturesExtractor().extract([instance])
for (v, classifier) in self.classifiers.items():
proba = classifier.predict_proba(features)
if proba[0][1] &gt; self.threshold:
violations += [v]
return violations
def evaluate(self, instances):
results = {}
all_violations = set()
for instance in instances:
all_violations |= set(instance.found_violated_user_cuts)
for idx in tqdm(
range(len(instances)),
desc=&#34;Evaluate (lazy)&#34;,
disable=not sys.stdout.isatty(),
):
instance = instances[idx]
condition_positive = set(instance.found_violated_user_cuts)
condition_negative = all_violations - condition_positive
pred_positive = set(self.predict(instance)) &amp; all_violations
pred_negative = all_violations - pred_positive
tp = len(pred_positive &amp; condition_positive)
tn = len(pred_negative &amp; condition_negative)
fp = len(pred_positive &amp; condition_negative)
fn = len(pred_negative &amp; condition_positive)
results[idx] = classifier_evaluation_dict(tp, tn, fp, fn)
return results</code></pre>
</details>
</section>
<section>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-classes">Classes</h2>
<dl>
<dt id="miplearn.components.cuts.UserCutsComponent"><code class="flex name class">
<span>class <span class="ident">UserCutsComponent</span></span>
<span>(</span><span>classifier=CountingClassifier(mean=None), threshold=0.05)</span>
</code></dt>
<dd>
<section class="desc"><p>A component that predicts which user cuts to enforce.</p></section>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">class UserCutsComponent(Component):
&#34;&#34;&#34;
A component that predicts which user cuts to enforce.
&#34;&#34;&#34;
def __init__(
self,
classifier: Classifier = CountingClassifier(),
threshold: float = 0.05,
):
self.threshold: float = threshold
self.classifier_prototype: Classifier = classifier
self.classifiers: Dict[Any, Classifier] = {}
def before_solve(self, solver, instance, model):
instance.found_violated_user_cuts = []
logger.info(&#34;Predicting violated user cuts...&#34;)
violations = self.predict(instance)
logger.info(&#34;Enforcing %d user cuts...&#34; % len(violations))
for v in violations:
cut = instance.build_user_cut(model, v)
solver.internal_solver.add_constraint(cut)
def after_solve(
self,
solver,
instance,
model,
results,
training_data,
):
pass
def fit(self, training_instances):
logger.debug(&#34;Fitting...&#34;)
features = InstanceFeaturesExtractor().extract(training_instances)
self.classifiers = {}
violation_to_instance_idx = {}
for (idx, instance) in enumerate(training_instances):
if not hasattr(instance, &#34;found_violated_user_cuts&#34;):
continue
for v in instance.found_violated_user_cuts:
if v not in self.classifiers:
self.classifiers[v] = deepcopy(self.classifier_prototype)
violation_to_instance_idx[v] = []
violation_to_instance_idx[v] += [idx]
for (v, classifier) in tqdm(
self.classifiers.items(),
desc=&#34;Fit (user cuts)&#34;,
disable=not sys.stdout.isatty(),
):
logger.debug(&#34;Training: %s&#34; % (str(v)))
label = np.zeros(len(training_instances))
label[violation_to_instance_idx[v]] = 1.0
classifier.fit(features, label)
def predict(self, instance):
violations = []
features = InstanceFeaturesExtractor().extract([instance])
for (v, classifier) in self.classifiers.items():
proba = classifier.predict_proba(features)
if proba[0][1] &gt; self.threshold:
violations += [v]
return violations
def evaluate(self, instances):
results = {}
all_violations = set()
for instance in instances:
all_violations |= set(instance.found_violated_user_cuts)
for idx in tqdm(
range(len(instances)),
desc=&#34;Evaluate (lazy)&#34;,
disable=not sys.stdout.isatty(),
):
instance = instances[idx]
condition_positive = set(instance.found_violated_user_cuts)
condition_negative = all_violations - condition_positive
pred_positive = set(self.predict(instance)) &amp; all_violations
pred_negative = all_violations - pred_positive
tp = len(pred_positive &amp; condition_positive)
tn = len(pred_negative &amp; condition_negative)
fp = len(pred_positive &amp; condition_negative)
fn = len(pred_negative &amp; condition_positive)
results[idx] = classifier_evaluation_dict(tp, tn, fp, fn)
return results</code></pre>
</details>
<h3>Ancestors</h3>
<ul class="hlist">
<li><a title="miplearn.components.component.Component" href="component.html#miplearn.components.component.Component">Component</a></li>
<li>abc.ABC</li>
</ul>
<h3>Methods</h3>
<dl>
<dt id="miplearn.components.cuts.UserCutsComponent.evaluate"><code class="name flex">
<span>def <span class="ident">evaluate</span></span>(<span>self, instances)</span>
</code></dt>
<dd>
<section class="desc"></section>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def evaluate(self, instances):
results = {}
all_violations = set()
for instance in instances:
all_violations |= set(instance.found_violated_user_cuts)
for idx in tqdm(
range(len(instances)),
desc=&#34;Evaluate (lazy)&#34;,
disable=not sys.stdout.isatty(),
):
instance = instances[idx]
condition_positive = set(instance.found_violated_user_cuts)
condition_negative = all_violations - condition_positive
pred_positive = set(self.predict(instance)) &amp; all_violations
pred_negative = all_violations - pred_positive
tp = len(pred_positive &amp; condition_positive)
tn = len(pred_negative &amp; condition_negative)
fp = len(pred_positive &amp; condition_negative)
fn = len(pred_negative &amp; condition_positive)
results[idx] = classifier_evaluation_dict(tp, tn, fp, fn)
return results</code></pre>
</details>
</dd>
<dt id="miplearn.components.cuts.UserCutsComponent.fit"><code class="name flex">
<span>def <span class="ident">fit</span></span>(<span>self, training_instances)</span>
</code></dt>
<dd>
<section class="desc"></section>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def fit(self, training_instances):
logger.debug(&#34;Fitting...&#34;)
features = InstanceFeaturesExtractor().extract(training_instances)
self.classifiers = {}
violation_to_instance_idx = {}
for (idx, instance) in enumerate(training_instances):
if not hasattr(instance, &#34;found_violated_user_cuts&#34;):
continue
for v in instance.found_violated_user_cuts:
if v not in self.classifiers:
self.classifiers[v] = deepcopy(self.classifier_prototype)
violation_to_instance_idx[v] = []
violation_to_instance_idx[v] += [idx]
for (v, classifier) in tqdm(
self.classifiers.items(),
desc=&#34;Fit (user cuts)&#34;,
disable=not sys.stdout.isatty(),
):
logger.debug(&#34;Training: %s&#34; % (str(v)))
label = np.zeros(len(training_instances))
label[violation_to_instance_idx[v]] = 1.0
classifier.fit(features, label)</code></pre>
</details>
</dd>
<dt id="miplearn.components.cuts.UserCutsComponent.predict"><code class="name flex">
<span>def <span class="ident">predict</span></span>(<span>self, instance)</span>
</code></dt>
<dd>
<section class="desc"></section>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def predict(self, instance):
violations = []
features = InstanceFeaturesExtractor().extract([instance])
for (v, classifier) in self.classifiers.items():
proba = classifier.predict_proba(features)
if proba[0][1] &gt; self.threshold:
violations += [v]
return violations</code></pre>
</details>
</dd>
</dl>
<h3>Inherited members</h3>
<ul class="hlist">
<li><code><b><a title="miplearn.components.component.Component" href="component.html#miplearn.components.component.Component">Component</a></b></code>:
<ul class="hlist">
<li><code><a title="miplearn.components.component.Component.after_solve" href="component.html#miplearn.components.component.Component.after_solve">after_solve</a></code></li>
<li><code><a title="miplearn.components.component.Component.before_solve" href="component.html#miplearn.components.component.Component.before_solve">before_solve</a></code></li>
<li><code><a title="miplearn.components.component.Component.iteration_cb" href="component.html#miplearn.components.component.Component.iteration_cb">iteration_cb</a></code></li>
</ul>
</li>
</ul>
</dd>
</dl>
</section>
</article>
<nav id="sidebar">
<h1>Index</h1>
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="miplearn.components" href="index.html">miplearn.components</a></code></li>
</ul>
</li>
<li><h3><a href="#header-classes">Classes</a></h3>
<ul>
<li>
<h4><code><a title="miplearn.components.cuts.UserCutsComponent" href="#miplearn.components.cuts.UserCutsComponent">UserCutsComponent</a></code></h4>
<ul class="">
<li><code><a title="miplearn.components.cuts.UserCutsComponent.evaluate" href="#miplearn.components.cuts.UserCutsComponent.evaluate">evaluate</a></code></li>
<li><code><a title="miplearn.components.cuts.UserCutsComponent.fit" href="#miplearn.components.cuts.UserCutsComponent.fit">fit</a></code></li>
<li><code><a title="miplearn.components.cuts.UserCutsComponent.predict" href="#miplearn.components.cuts.UserCutsComponent.predict">predict</a></code></li>
</ul>
</li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.7.0</a>.</p>
</footer>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad()</script>
</body>
</html>