You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/benchmark.py

45 lines
1.9 KiB

# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from .solvers import LearningSolver
import pandas as pd
class BenchmarkRunner:
def __init__(self, solvers):
assert isinstance(solvers, dict)
for solver in solvers.values():
assert isinstance(solver, LearningSolver)
self.solvers = solvers
self.results = None
def load_fit(self, filename):
for (name, solver) in self.solvers.items():
solver.load(filename)
solver.fit()
def parallel_solve(self, instances, n_jobs=1):
self.results = pd.DataFrame(columns=["Solver",
"Instance",
"Wallclock Time",
"Optimal Value",
])
for (name, solver) in self.solvers.items():
results = solver.parallel_solve(instances, n_jobs=n_jobs, label=name)
for i in range(len(instances)):
wallclock_time = None
for key in ["Time", "Wall time", "Wallclock time"]:
if key not in results[i]["Solver"][0].keys():
continue
if str(results[i]["Solver"][0][key]) == "<undefined>":
continue
wallclock_time = float(results[i]["Solver"][0][key])
self.results = self.results.append({
"Solver": name,
"Instance": i,
"Wallclock Time": wallclock_time,
"Optimal Value": results[i]["Problem"][0]["Lower bound"]
}, ignore_index=True)
def raw_results(self):
return self.results