You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/problems/tests/test_knapsack.py

72 lines
3.1 KiB

# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver
from miplearn.problems.knapsack import MultiKnapsackGenerator, MultiKnapsackInstance
from scipy.stats import uniform, randint
import numpy as np
def test_knapsack_generator():
gen = MultiKnapsackGenerator(n=randint(low=100, high=101),
m=randint(low=30, high=31),
w=randint(low=0, high=1000),
K=randint(low=500, high=501),
u=uniform(loc=1.0, scale=1.0),
alpha=uniform(loc=0.50, scale=0.0),
)
instances = gen.generate(100)
w_sum = sum(instance.weights for instance in instances) / len(instances)
p_sum = sum(instance.prices for instance in instances) / len(instances)
b_sum = sum(instance.capacities for instance in instances) / len(instances)
assert round(np.mean(w_sum), -1) == 500.
assert round(np.mean(p_sum), -1) == 1250.
assert round(np.mean(b_sum), -3) == 25000.
def test_knapsack_instance():
instance = MultiKnapsackInstance(
prices=np.array([5.0, 10.0, 15.0]),
capacities=np.array([20.0, 30.0]),
weights=np.array([
[5.0, 5.0, 5.0],
[5.0, 10.0, 15.0],
])
)
assert (instance.get_instance_features() == np.array([
5.0, 10.0, 15.0, 20.0, 30.0, 5.0, 5.0, 5.0, 5.0, 10.0, 15.0
])).all()
solver = LearningSolver()
results = solver.solve(instance)
assert results["Problem"][0]["Lower bound"] == 30.0
def test_knapsack_fixed_weights_jitter():
gen = MultiKnapsackGenerator(n=randint(low=50, high=51),
m=randint(low=10, high=11),
w=randint(low=0, high=1000),
K=randint(low=500, high=501),
u=uniform(loc=1.0, scale=0.0),
alpha=uniform(loc=0.50, scale=0.0),
fix_w=True,
w_jitter=randint(low=0, high=1),
)
instances = gen.generate(100)
w = [instance.weights[0,0] for instance in instances]
assert np.std(w) == 0.
gen = MultiKnapsackGenerator(n=randint(low=1, high=2),
m=randint(low=10, high=11),
w=randint(low=1000, high=1001),
K=randint(low=500, high=501),
u=uniform(loc=1.0, scale=0.0),
alpha=uniform(loc=0.50, scale=0.0),
fix_w=True,
w_jitter=randint(low=0, high=1001),
)
instances = gen.generate(1_000)
w = [instance.weights[0,0] for instance in instances]
assert round(np.std(w), -1) == 290.
assert round(np.mean(w), -2) == 1500.