You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
273 lines
7.2 KiB
273 lines
7.2 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
from typing import Dict
|
|
from unittest.mock import Mock
|
|
|
|
import numpy as np
|
|
from numpy.testing import assert_array_equal
|
|
from scipy.stats import randint
|
|
|
|
from miplearn import Classifier, LearningSolver
|
|
from miplearn.classifiers.threshold import Threshold
|
|
from miplearn.components import classifier_evaluation_dict
|
|
from miplearn.components.primal import PrimalSolutionComponent
|
|
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
|
from miplearn.types import TrainingSample, Features
|
|
|
|
|
|
def test_xy() -> None:
|
|
features: Features = {
|
|
"Variables": {
|
|
"x": {
|
|
0: {
|
|
"Category": "default",
|
|
"User features": [0.0, 0.0],
|
|
},
|
|
1: {
|
|
"Category": None,
|
|
},
|
|
2: {
|
|
"Category": "default",
|
|
"User features": [1.0, 0.0],
|
|
},
|
|
3: {
|
|
"Category": "default",
|
|
"User features": [1.0, 1.0],
|
|
},
|
|
}
|
|
}
|
|
}
|
|
sample: TrainingSample = {
|
|
"Solution": {
|
|
"x": {
|
|
0: 0.0,
|
|
1: 1.0,
|
|
2: 1.0,
|
|
3: 0.0,
|
|
}
|
|
},
|
|
"LP solution": {
|
|
"x": {
|
|
0: 0.1,
|
|
1: 0.1,
|
|
2: 0.1,
|
|
3: 0.1,
|
|
}
|
|
},
|
|
}
|
|
x_expected = {
|
|
"default": [
|
|
[0.0, 0.0, 0.1],
|
|
[1.0, 0.0, 0.1],
|
|
[1.0, 1.0, 0.1],
|
|
]
|
|
}
|
|
y_expected = {
|
|
"default": [
|
|
[True, False],
|
|
[False, True],
|
|
[True, False],
|
|
]
|
|
}
|
|
xy = PrimalSolutionComponent.sample_xy(features, sample)
|
|
assert xy is not None
|
|
x_actual, y_actual = xy
|
|
assert x_actual == x_expected
|
|
assert y_actual == y_expected
|
|
|
|
|
|
def test_xy_without_lp_solution() -> None:
|
|
features: Features = {
|
|
"Variables": {
|
|
"x": {
|
|
0: {
|
|
"Category": "default",
|
|
"User features": [0.0, 0.0],
|
|
},
|
|
1: {
|
|
"Category": None,
|
|
},
|
|
2: {
|
|
"Category": "default",
|
|
"User features": [1.0, 0.0],
|
|
},
|
|
3: {
|
|
"Category": "default",
|
|
"User features": [1.0, 1.0],
|
|
},
|
|
}
|
|
}
|
|
}
|
|
sample: TrainingSample = {
|
|
"Solution": {
|
|
"x": {
|
|
0: 0.0,
|
|
1: 1.0,
|
|
2: 1.0,
|
|
3: 0.0,
|
|
}
|
|
},
|
|
}
|
|
x_expected = {
|
|
"default": [
|
|
[0.0, 0.0],
|
|
[1.0, 0.0],
|
|
[1.0, 1.0],
|
|
]
|
|
}
|
|
y_expected = {
|
|
"default": [
|
|
[True, False],
|
|
[False, True],
|
|
[True, False],
|
|
]
|
|
}
|
|
xy = PrimalSolutionComponent.sample_xy(features, sample)
|
|
assert xy is not None
|
|
x_actual, y_actual = xy
|
|
assert x_actual == x_expected
|
|
assert y_actual == y_expected
|
|
|
|
|
|
def test_predict() -> None:
|
|
clf = Mock(spec=Classifier)
|
|
clf.predict_proba = Mock(
|
|
return_value=np.array(
|
|
[
|
|
[0.9, 0.1],
|
|
[0.5, 0.5],
|
|
[0.1, 0.9],
|
|
]
|
|
)
|
|
)
|
|
thr = Mock(spec=Threshold)
|
|
thr.predict = Mock(return_value=[0.75, 0.75])
|
|
features: Features = {
|
|
"Variables": {
|
|
"x": {
|
|
0: {
|
|
"Category": "default",
|
|
"User features": [0.0, 0.0],
|
|
},
|
|
1: {
|
|
"Category": "default",
|
|
"User features": [0.0, 2.0],
|
|
},
|
|
2: {
|
|
"Category": "default",
|
|
"User features": [2.0, 0.0],
|
|
},
|
|
}
|
|
}
|
|
}
|
|
sample: TrainingSample = {
|
|
"LP solution": {
|
|
"x": {
|
|
0: 0.1,
|
|
1: 0.5,
|
|
2: 0.9,
|
|
}
|
|
}
|
|
}
|
|
x, _ = PrimalSolutionComponent.sample_xy(features, sample)
|
|
comp = PrimalSolutionComponent()
|
|
comp.classifiers = {"default": clf}
|
|
comp.thresholds = {"default": thr}
|
|
solution_actual = comp.sample_predict(features, sample)
|
|
clf.predict_proba.assert_called_once()
|
|
assert_array_equal(x["default"], clf.predict_proba.call_args[0][0])
|
|
thr.predict.assert_called_once()
|
|
assert_array_equal(x["default"], thr.predict.call_args[0][0])
|
|
assert solution_actual == {
|
|
"x": {
|
|
0: 0.0,
|
|
1: None,
|
|
2: 1.0,
|
|
}
|
|
}
|
|
|
|
|
|
def test_fit_xy():
|
|
clf = Mock(spec=Classifier)
|
|
clf.clone = lambda: Mock(spec=Classifier)
|
|
thr = Mock(spec=Threshold)
|
|
thr.clone = lambda: Mock(spec=Threshold)
|
|
comp = PrimalSolutionComponent(classifier=clf, threshold=thr)
|
|
x = {
|
|
"type-a": np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]),
|
|
"type-b": np.array([[7.0, 8.0, 9.0]]),
|
|
}
|
|
y = {
|
|
"type-a": np.array([[True, False], [False, True]]),
|
|
"type-b": np.array([[True, False]]),
|
|
}
|
|
comp.fit_xy(x, y)
|
|
for category in ["type-a", "type-b"]:
|
|
assert category in comp.classifiers
|
|
assert category in comp.thresholds
|
|
clf = comp.classifiers[category]
|
|
clf.fit.assert_called_once()
|
|
assert_array_equal(x[category], clf.fit.call_args[0][0])
|
|
assert_array_equal(y[category], clf.fit.call_args[0][1])
|
|
thr = comp.thresholds[category]
|
|
thr.fit.assert_called_once()
|
|
assert_array_equal(x[category], thr.fit.call_args[0][1])
|
|
assert_array_equal(y[category], thr.fit.call_args[0][2])
|
|
|
|
|
|
def test_usage():
|
|
solver = LearningSolver(
|
|
components=[
|
|
PrimalSolutionComponent(),
|
|
]
|
|
)
|
|
gen = TravelingSalesmanGenerator(n=randint(low=5, high=6))
|
|
instance = gen.generate(1)[0]
|
|
solver.solve(instance)
|
|
solver.fit([instance])
|
|
stats = solver.solve(instance)
|
|
assert stats["Primal: Free"] == 0
|
|
assert stats["Primal: One"] + stats["Primal: Zero"] == 10
|
|
assert stats["Lower bound"] == stats["Warm start value"]
|
|
|
|
|
|
def test_evaluate() -> None:
|
|
comp = PrimalSolutionComponent()
|
|
comp.sample_predict = lambda _, __: { # type: ignore
|
|
"x": {
|
|
0: 1.0,
|
|
1: 0.0,
|
|
2: 0.0,
|
|
3: None,
|
|
4: 1.0,
|
|
}
|
|
}
|
|
features: Features = {
|
|
"Variables": {
|
|
"x": {
|
|
0: {},
|
|
1: {},
|
|
2: {},
|
|
3: {},
|
|
4: {},
|
|
}
|
|
}
|
|
}
|
|
sample: TrainingSample = {
|
|
"Solution": {
|
|
"x": {
|
|
0: 1.0,
|
|
1: 1.0,
|
|
2: 0.0,
|
|
3: 1.0,
|
|
4: 1.0,
|
|
}
|
|
}
|
|
}
|
|
ev = comp.sample_evaluate(features, sample)
|
|
assert ev == {
|
|
0: classifier_evaluation_dict(tp=1, fp=1, tn=3, fn=0),
|
|
1: classifier_evaluation_dict(tp=2, fp=0, tn=1, fn=2),
|
|
}
|