You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
59 lines
2.6 KiB
59 lines
2.6 KiB
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
|
|
|
from .solvers import LearningSolver
|
|
import pandas as pd
|
|
|
|
class BenchmarkRunner:
|
|
def __init__(self, solvers):
|
|
assert isinstance(solvers, dict)
|
|
for solver in solvers.values():
|
|
assert isinstance(solver, LearningSolver)
|
|
self.solvers = solvers
|
|
self.results = None
|
|
|
|
def load_fit(self, filename):
|
|
for (name, solver) in self.solvers.items():
|
|
solver.load(filename)
|
|
solver.fit()
|
|
|
|
def parallel_solve(self, instances, n_jobs=1):
|
|
if self.results is None:
|
|
self.results = pd.DataFrame(columns=["Solver",
|
|
"Instance",
|
|
"Wallclock Time",
|
|
"Obj Value",
|
|
])
|
|
for (name, solver) in self.solvers.items():
|
|
results = solver.parallel_solve(instances, n_jobs=n_jobs, label=name)
|
|
for i in range(len(instances)):
|
|
wallclock_time = None
|
|
for key in ["Time", "Wall time", "Wallclock time"]:
|
|
if key not in results[i]["Solver"][0].keys():
|
|
continue
|
|
if str(results[i]["Solver"][0][key]) == "<undefined>":
|
|
continue
|
|
wallclock_time = float(results[i]["Solver"][0][key])
|
|
self.results = self.results.append({
|
|
"Solver": name,
|
|
"Instance": i,
|
|
"Wallclock Time": wallclock_time,
|
|
"Obj Value": results[i]["Problem"][0]["Lower bound"]
|
|
}, ignore_index=True)
|
|
groups = self.results.groupby("Instance")
|
|
best_obj_value = groups["Obj Value"].transform("max")
|
|
best_wallclock_time = groups["Wallclock Time"].transform("min")
|
|
self.results["Relative Obj Value"] = \
|
|
self.results["Obj Value"] / best_obj_value
|
|
self.results["Relative Wallclock Time"] = \
|
|
self.results["Wallclock Time"] / best_wallclock_time
|
|
|
|
def raw_results(self):
|
|
return self.results
|
|
|
|
def save_results(self, filename):
|
|
self.results.to_csv(filename)
|
|
|
|
def load_results(self, filename):
|
|
self.results = pd.read_csv(filename, index_col=0) |