You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/src/python/miplearn/solvers.py

538 lines
18 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
import re
import sys
from abc import ABC, abstractmethod
from copy import deepcopy
from io import StringIO
import pyomo.core.kernel.objective
import pyomo.environ as pe
from p_tqdm import p_map
from pyomo.core import Var
from scipy.stats import randint
from . import (ObjectiveValueComponent,
PrimalSolutionComponent,
LazyConstraintsComponent)
from .instance import Instance
logger = logging.getLogger(__name__)
# Global memory for multiprocessing
SOLVER = [None]
INSTANCES = [None]
def _parallel_solve(instance_idx):
solver = deepcopy(SOLVER[0])
instance = INSTANCES[0][instance_idx]
results = solver.solve(instance)
return {
"Results": results,
"Solution": instance.solution,
"LP solution": instance.lp_solution,
"LP value": instance.lp_value,
"Upper bound": instance.upper_bound,
"Lower bound": instance.lower_bound,
"Violations": instance.found_violations,
}
class RedirectOutput(object):
def __init__(self, streams):
self.streams = streams
self._original_stdout = sys.stdout
self._original_stderr = sys.stderr
sys.stdout = self
sys.stderr = self
def __del__(self):
sys.stdout = self._original_stdout
sys.stderr = self._original_stderr
def write(self, data):
for stream in self.streams:
stream.write(data)
def flush(self):
for stream in self.streams:
stream.flush()
def __enter__(self):
pass
def __exit__(self, _type, _value, _traceback):
pass
class InternalSolver(ABC):
"""
The MIP solver used internaly by LearningSolver.
Attributes
----------
instance: miplearn.Instance
The MIPLearn instance currently loaded to the solver
model: pyomo.core.ConcreteModel
The Pyomo model currently loaded on the solver
"""
def __init__(self):
self.instance = None
self.model = None
self._all_vars = None
self._bin_vars = None
self._is_warm_start_available = False
self._pyomo_solver = None
self._obj_sense = None
self._varname_to_var = {}
def solve_lp(self, tee=False):
"""
Solves the LP relaxation of the currently loaded instance.
Parameters
----------
tee: bool
If true, prints the solver log to the screen.
Returns
-------
dict
A dictionary of solver statistics containing the following keys:
"Optimal value".
"""
for var in self._bin_vars:
lb, ub = var.bounds
var.setlb(lb)
var.setub(ub)
var.domain = pyomo.core.base.set_types.Reals
self._pyomo_solver.update_var(var)
results = self._pyomo_solver.solve(tee=tee)
for var in self._bin_vars:
var.domain = pyomo.core.base.set_types.Binary
self._pyomo_solver.update_var(var)
return {
"Optimal value": results["Problem"][0]["Lower bound"],
}
def get_solution(self):
"""
Returns current solution found by the solver.
If called after `solve`, returns the best primal solution found during
the search. If called after `solve_lp`, returns the optimal solution
to the LP relaxation.
The solution is a dictionary `sol`, where the optimal value of `var[idx]`
is given by `sol[var][idx]`.
"""
solution = {}
for var in self.model.component_objects(Var):
solution[str(var)] = {}
for index in var:
solution[str(var)][index] = var[index].value
return solution
def set_warm_start(self, solution):
"""
Sets the warm start to be used by the solver.
The solution should be a dictionary following the same format as the
one produced by `get_solution`. Only one warm start is currently
supported. Calling this function when a warm start already exists will
remove the previous warm start.
"""
self.clear_warm_start()
count_total, count_fixed = 0, 0
for var_name in solution:
var = self._varname_to_var[var_name]
for index in solution[var_name]:
count_total += 1
var[index].value = solution[var_name][index]
if solution[var_name][index] is not None:
count_fixed += 1
if count_fixed > 0:
self._is_warm_start_available = True
logger.info("Setting start values for %d variables (out of %d)" %
(count_fixed, count_total))
def clear_warm_start(self):
"""
Removes any existing warm start from the solver.
"""
for var in self._all_vars:
if not var.fixed:
var.value = None
self._is_warm_start_available = False
def set_instance(self, instance, model=None):
"""
Loads the given instance into the solver.
Parameters
----------
instance: miplearn.Instance
The instance to be loaded.
model: pyomo.core.ConcreteModel
The corresponding Pyomo model. If not provided, it will be
generated by calling `instance.to_model()`.
"""
if model is None:
model = instance.to_model()
assert isinstance(instance, Instance)
assert isinstance(model, pe.ConcreteModel)
self.instance = instance
self.model = model
self._pyomo_solver.set_instance(model)
# Update objective sense
self._obj_sense = "max"
if self._pyomo_solver._objective.sense == pyomo.core.kernel.objective.minimize:
self._obj_sense = "min"
# Update variables
self._all_vars = []
self._bin_vars = []
self._varname_to_var = {}
for var in model.component_objects(Var):
self._varname_to_var[var.name] = var
for idx in var:
self._all_vars += [var[idx]]
if var[idx].domain == pyomo.core.base.set_types.Binary:
self._bin_vars += [var[idx]]
def fix(self, solution):
"""
Fixes the values of a subset of decision variables.
The values should be provided in the dictionary format generated by
`get_solution`. Missing values in the solution indicate variables
that should be left free.
"""
count_total, count_fixed = 0, 0
for varname in solution:
for index in solution[varname]:
var = self._varname_to_var[varname]
count_total += 1
if solution[varname][index] is None:
continue
count_fixed += 1
var[index].fix(solution[varname][index])
self._pyomo_solver.update_var(var[index])
logger.info("Fixing values for %d variables (out of %d)" %
(count_fixed, count_total))
def add_constraint(self, constraint):
"""
Adds a single constraint to the model.
"""
self._pyomo_solver.add_constraint(constraint)
def solve(self, tee=False):
"""
Solves the currently loaded instance.
Parameters
----------
tee: bool
If true, prints the solver log to the screen.
Returns
-------
dict
A dictionary of solver statistics containing the following keys:
"Lower bound", "Upper bound", "Wallclock time", "Nodes", "Sense",
"Log" and "Warm start value".
"""
total_wallclock_time = 0
streams = [StringIO()]
if tee:
streams += [sys.stdout]
self.instance.found_violations = []
while True:
logger.debug("Solving MIP...")
with RedirectOutput(streams):
results = self._pyomo_solver.solve(tee=True,
warmstart=self._is_warm_start_available)
total_wallclock_time += results["Solver"][0]["Wallclock time"]
if not hasattr(self.instance, "find_violations"):
break
logger.debug("Finding violated constraints...")
violations = self.instance.find_violations(self.model)
if len(violations) == 0:
break
self.instance.found_violations += violations
logger.debug(" %d violations found" % len(violations))
for v in violations:
cut = self.instance.build_lazy_constraint(self.model, v)
self.add_constraint(cut)
log = streams[0].getvalue()
return {
"Lower bound": results["Problem"][0]["Lower bound"],
"Upper bound": results["Problem"][0]["Upper bound"],
"Wallclock time": total_wallclock_time,
"Nodes": 1,
"Sense": self._obj_sense,
"Log": log,
"Warm start value": self.extract_warm_start_value(log),
}
def extract_warm_start_value(self, log):
"""
Extracts and returns the objective value of the user-provided MIP start
from the provided solver log. If more than one value is found, returns
the last one. If no value is present in the logs, returns None.
"""
ws_value = None
for line in log.splitlines():
matches = re.findall(self._get_warm_start_regexp(), line)
if len(matches) == 0:
continue
ws_value = float(matches[0])
return ws_value
@abstractmethod
def _get_warm_start_regexp(self):
pass
class GurobiSolver(InternalSolver):
def __init__(self):
super().__init__()
self._pyomo_solver = pe.SolverFactory('gurobi_persistent')
self._pyomo_solver.options["Seed"] = randint(low=0, high=1000).rvs()
def set_threads(self, threads):
self._pyomo_solver.options["Threads"] = threads
def set_time_limit(self, time_limit):
self._pyomo_solver.options["TimeLimit"] = time_limit
def set_gap_tolerance(self, gap_tolerance):
self._pyomo_solver.options["MIPGap"] = gap_tolerance
def solve(self, tee=False):
from gurobipy import GRB
def cb(cb_model, cb_opt, cb_where):
if cb_where == GRB.Callback.MIPSOL:
cb_opt.cbGetSolution(self._all_vars)
logger.debug("Finding violated constraints...")
violations = self.instance.find_violations(cb_model)
self.instance.found_violations += violations
logger.debug(" %d violations found" % len(violations))
for v in violations:
cut = self.instance.build_lazy_constraint(cb_model, v)
cb_opt.cbLazy(cut)
if hasattr(self.instance, "find_violations"):
self._pyomo_solver.options["LazyConstraints"] = 1
self._pyomo_solver.set_callback(cb)
self.instance.found_violations = []
print(self._is_warm_start_available)
streams = [StringIO()]
if tee:
streams += [sys.stdout]
with RedirectOutput(streams):
results = self._pyomo_solver.solve(tee=True,
warmstart=self._is_warm_start_available)
self._pyomo_solver.set_callback(None)
node_count = int(self._pyomo_solver._solver_model.getAttr("NodeCount"))
log = streams[0].getvalue()
return {
"Lower bound": results["Problem"][0]["Lower bound"],
"Upper bound": results["Problem"][0]["Upper bound"],
"Wallclock time": results["Solver"][0]["Wallclock time"],
"Nodes": max(1, node_count),
"Sense": self._obj_sense,
"Log": log,
"Warm start value": self.extract_warm_start_value(log),
}
def _get_warm_start_regexp(self):
return "MIP start with objective ([0-9.e+-]*)"
class CPLEXSolver(InternalSolver):
def __init__(self,
presolve=1,
mip_display=4,
threads=None,
time_limit=None,
gap_tolerance=None):
super().__init__()
self._pyomo_solver = pe.SolverFactory('cplex_persistent')
self._pyomo_solver.options["randomseed"] = randint(low=0, high=1000).rvs()
self._pyomo_solver.options["preprocessing_presolve"] = presolve
self._pyomo_solver.options["mip_display"] = mip_display
if threads is not None:
self.set_threads(threads)
if time_limit is not None:
self.set_time_limit(time_limit)
if gap_tolerance is not None:
self.set_gap_tolerance(gap_tolerance)
def set_threads(self, threads):
self._pyomo_solver.options["threads"] = threads
def set_time_limit(self, time_limit):
self._pyomo_solver.options["timelimit"] = time_limit
def set_gap_tolerance(self, gap_tolerance):
self._pyomo_solver.options["mip_tolerances_mipgap"] = gap_tolerance
def solve_lp(self, tee=False):
import cplex
lp = self._pyomo_solver._solver_model
var_types = lp.variables.get_types()
n_vars = len(var_types)
lp.set_problem_type(cplex.Cplex.problem_type.LP)
results = self._pyomo_solver.solve(tee=tee)
lp.variables.set_types(zip(range(n_vars), var_types))
return {
"Optimal value": results["Problem"][0]["Lower bound"],
}
def _get_warm_start_regexp(self):
return "MIP start .* with objective ([0-9.e+-]*)\\."
class LearningSolver:
"""
Mixed-Integer Linear Programming (MIP) solver that extracts information
from previous runs, using Machine Learning methods, to accelerate the
solution of new (yet unseen) instances.
"""
def __init__(self,
components=None,
gap_tolerance=None,
mode="exact",
solver="gurobi",
threads=4,
time_limit=None):
self.components = {}
self.mode = mode
self.internal_solver = None
self.internal_solver_factory = solver
self.threads = threads
self.time_limit = time_limit
self.gap_tolerance = gap_tolerance
self.tee = False
if components is not None:
for comp in components:
self.add(comp)
else:
self.add(ObjectiveValueComponent())
self.add(PrimalSolutionComponent())
self.add(LazyConstraintsComponent())
assert self.mode in ["exact", "heuristic"]
for component in self.components.values():
component.mode = self.mode
def _create_internal_solver(self):
logger.debug("Initializing %s" % self.internal_solver_factory)
if self.internal_solver_factory == "cplex":
solver = CPLEXSolver()
elif self.internal_solver_factory == "gurobi":
solver = GurobiSolver()
elif callable(self.internal_solver_factory):
solver = self.internal_solver_factory()
assert isinstance(solver, InternalSolver)
else:
raise Exception("solver %s not supported" % self.internal_solver_factory)
solver.set_threads(self.threads)
if self.time_limit is not None:
solver.set_time_limit(self.time_limit)
if self.gap_tolerance is not None:
solver.set_gap_tolerance(self.gap_tolerance)
return solver
def solve(self,
instance,
model=None,
tee=False,
relaxation_only=False):
if model is None:
model = instance.to_model()
self.tee = tee
self.internal_solver = self._create_internal_solver()
self.internal_solver.set_instance(instance, model=model)
logger.debug("Solving LP relaxation...")
results = self.internal_solver.solve_lp(tee=tee)
instance.lp_solution = self.internal_solver.get_solution()
instance.lp_value = results["Optimal value"]
logger.debug("Running before_solve callbacks...")
for component in self.components.values():
component.before_solve(self, instance, model)
if relaxation_only:
return results
results = self.internal_solver.solve(tee=tee)
# Read MIP solution and bounds
instance.lower_bound = results["Lower bound"]
instance.upper_bound = results["Upper bound"]
instance.solution = self.internal_solver.get_solution()
logger.debug("Calling after_solve callbacks...")
for component in self.components.values():
component.after_solve(self, instance, model, results)
return results
def parallel_solve(self,
instances,
n_jobs=4,
label="Solve"):
self.internal_solver = None
SOLVER[0] = self
INSTANCES[0] = instances
p_map_results = p_map(_parallel_solve,
list(range(len(instances))),
num_cpus=n_jobs,
desc=label)
results = [p["Results"] for p in p_map_results]
for (idx, r) in enumerate(p_map_results):
instances[idx].solution = r["Solution"]
instances[idx].lp_solution = r["LP solution"]
instances[idx].lp_value = r["LP value"]
instances[idx].lower_bound = r["Lower bound"]
instances[idx].upper_bound = r["Upper bound"]
instances[idx].found_violations = r["Violations"]
return results
def fit(self, training_instances):
if len(training_instances) == 0:
return
for component in self.components.values():
component.fit(training_instances)
def add(self, component):
name = component.__class__.__name__
self.components[name] = component
def __getstate__(self):
self.internal_solver = None
return self.__dict__