You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
322 lines
10 KiB
322 lines
10 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
import re
|
|
import sys
|
|
from io import StringIO
|
|
from typing import Any, List, Dict, Optional
|
|
|
|
import pyomo
|
|
from pyomo import environ as pe
|
|
from pyomo.core import Var, Constraint
|
|
from pyomo.opt import TerminationCondition
|
|
from pyomo.opt.base.solvers import SolverFactory
|
|
|
|
from miplearn.instance import Instance
|
|
from miplearn.solvers import _RedirectOutput
|
|
from miplearn.solvers.internal import (
|
|
InternalSolver,
|
|
LPSolveStats,
|
|
IterationCallback,
|
|
LazyCallback,
|
|
MIPSolveStats,
|
|
)
|
|
from miplearn.types import VarIndex, SolverParams, Solution
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BasePyomoSolver(InternalSolver):
|
|
"""
|
|
Base class for all Pyomo solvers.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
solver_factory: SolverFactory,
|
|
params: SolverParams,
|
|
) -> None:
|
|
self.instance: Optional[Instance] = None
|
|
self.model: Optional[pe.ConcreteModel] = None
|
|
self._all_vars: List[pe.Var] = []
|
|
self._bin_vars: List[pe.Var] = []
|
|
self._is_warm_start_available: bool = False
|
|
self._pyomo_solver: SolverFactory = solver_factory
|
|
self._obj_sense: str = "min"
|
|
self._varname_to_var: Dict[str, pe.Var] = {}
|
|
self._cname_to_constr: Dict[str, pe.Constraint] = {}
|
|
self._termination_condition: str = ""
|
|
|
|
for (key, value) in params.items():
|
|
self._pyomo_solver.options[key] = value
|
|
|
|
def solve_lp(
|
|
self,
|
|
tee: bool = False,
|
|
) -> LPSolveStats:
|
|
self.relax()
|
|
streams: List[Any] = [StringIO()]
|
|
if tee:
|
|
streams += [sys.stdout]
|
|
with _RedirectOutput(streams):
|
|
results = self._pyomo_solver.solve(tee=True)
|
|
self._restore_integrality()
|
|
opt_value = None
|
|
if not self.is_infeasible():
|
|
opt_value = results["Problem"][0]["Lower bound"]
|
|
return {
|
|
"Optimal value": opt_value,
|
|
"Log": streams[0].getvalue(),
|
|
}
|
|
|
|
def _restore_integrality(self) -> None:
|
|
for var in self._bin_vars:
|
|
var.domain = pyomo.core.base.set_types.Binary
|
|
self._pyomo_solver.update_var(var)
|
|
|
|
def solve(
|
|
self,
|
|
tee: bool = False,
|
|
iteration_cb: IterationCallback = None,
|
|
lazy_cb: LazyCallback = None,
|
|
) -> MIPSolveStats:
|
|
if lazy_cb is not None:
|
|
raise Exception("lazy callback not supported")
|
|
total_wallclock_time = 0
|
|
streams: List[Any] = [StringIO()]
|
|
if tee:
|
|
streams += [sys.stdout]
|
|
if iteration_cb is None:
|
|
iteration_cb = lambda: False
|
|
while True:
|
|
logger.debug("Solving MIP...")
|
|
with _RedirectOutput(streams):
|
|
results = self._pyomo_solver.solve(
|
|
tee=True,
|
|
warmstart=self._is_warm_start_available,
|
|
)
|
|
total_wallclock_time += results["Solver"][0]["Wallclock time"]
|
|
should_repeat = iteration_cb()
|
|
if not should_repeat:
|
|
break
|
|
log = streams[0].getvalue()
|
|
node_count = self._extract_node_count(log)
|
|
ws_value = self._extract_warm_start_value(log)
|
|
self._termination_condition = results["Solver"][0]["Termination condition"]
|
|
lb, ub = None, None
|
|
if not self.is_infeasible():
|
|
lb = results["Problem"][0]["Lower bound"]
|
|
ub = results["Problem"][0]["Upper bound"]
|
|
stats: MIPSolveStats = {
|
|
"Lower bound": lb,
|
|
"Upper bound": ub,
|
|
"Wallclock time": total_wallclock_time,
|
|
"Sense": self._obj_sense,
|
|
"Log": log,
|
|
"Nodes": node_count,
|
|
"Warm start value": ws_value,
|
|
"LP value": None,
|
|
}
|
|
return stats
|
|
|
|
def get_solution(self) -> Optional[Solution]:
|
|
assert self.model is not None
|
|
if self.is_infeasible():
|
|
return None
|
|
solution: Solution = {}
|
|
for var in self.model.component_objects(Var):
|
|
solution[str(var)] = {}
|
|
for index in var:
|
|
if var[index].fixed:
|
|
continue
|
|
solution[str(var)][index] = var[index].value
|
|
return solution
|
|
|
|
def set_warm_start(self, solution: Solution) -> None:
|
|
self._clear_warm_start()
|
|
count_total, count_fixed = 0, 0
|
|
for var_name in solution:
|
|
var = self._varname_to_var[var_name]
|
|
for index in solution[var_name]:
|
|
count_total += 1
|
|
var[index].value = solution[var_name][index]
|
|
if solution[var_name][index] is not None:
|
|
count_fixed += 1
|
|
if count_fixed > 0:
|
|
self._is_warm_start_available = True
|
|
logger.info(
|
|
"Setting start values for %d variables (out of %d)"
|
|
% (count_fixed, count_total)
|
|
)
|
|
|
|
def set_instance(
|
|
self,
|
|
instance: Instance,
|
|
model: Any = None,
|
|
) -> None:
|
|
if model is None:
|
|
model = instance.to_model()
|
|
assert isinstance(model, pe.ConcreteModel)
|
|
self.instance = instance
|
|
self.model = model
|
|
self._pyomo_solver.set_instance(model)
|
|
self._update_obj()
|
|
self._update_vars()
|
|
self._update_constrs()
|
|
|
|
def get_value(self, var_name: str, index: VarIndex) -> Optional[float]:
|
|
if self.is_infeasible():
|
|
return None
|
|
else:
|
|
var = self._varname_to_var[var_name]
|
|
return var[index].value
|
|
|
|
def get_empty_solution(self) -> Solution:
|
|
assert self.model is not None
|
|
solution: Solution = {}
|
|
for var in self.model.component_objects(Var):
|
|
svar = str(var)
|
|
solution[svar] = {}
|
|
for index in var:
|
|
if var[index].fixed:
|
|
continue
|
|
solution[svar][index] = None
|
|
return solution
|
|
|
|
def _clear_warm_start(self) -> None:
|
|
for var in self._all_vars:
|
|
if not var.fixed:
|
|
var.value = None
|
|
self._is_warm_start_available = False
|
|
|
|
def _update_obj(self) -> None:
|
|
self._obj_sense = "max"
|
|
if self._pyomo_solver._objective.sense == pyomo.core.kernel.objective.minimize:
|
|
self._obj_sense = "min"
|
|
|
|
def _update_vars(self) -> None:
|
|
assert self.model is not None
|
|
self._all_vars = []
|
|
self._bin_vars = []
|
|
self._varname_to_var = {}
|
|
for var in self.model.component_objects(Var):
|
|
self._varname_to_var[var.name] = var
|
|
for idx in var:
|
|
self._all_vars += [var[idx]]
|
|
if var[idx].domain == pyomo.core.base.set_types.Binary:
|
|
self._bin_vars += [var[idx]]
|
|
|
|
def _update_constrs(self) -> None:
|
|
assert self.model is not None
|
|
self._cname_to_constr = {}
|
|
for constr in self.model.component_objects(Constraint):
|
|
self._cname_to_constr[constr.name] = constr
|
|
|
|
def fix(self, solution):
|
|
count_total, count_fixed = 0, 0
|
|
for varname in solution:
|
|
for index in solution[varname]:
|
|
var = self._varname_to_var[varname]
|
|
count_total += 1
|
|
if solution[varname][index] is None:
|
|
continue
|
|
count_fixed += 1
|
|
var[index].fix(solution[varname][index])
|
|
self._pyomo_solver.update_var(var[index])
|
|
logger.info(
|
|
"Fixing values for %d variables (out of %d)"
|
|
% (
|
|
count_fixed,
|
|
count_total,
|
|
)
|
|
)
|
|
|
|
def add_constraint(self, constraint):
|
|
self._pyomo_solver.add_constraint(constraint)
|
|
self._update_constrs()
|
|
|
|
@staticmethod
|
|
def __extract(
|
|
log: str,
|
|
regexp: Optional[str],
|
|
default: Optional[str] = None,
|
|
) -> Optional[str]:
|
|
if regexp is None:
|
|
return default
|
|
value = default
|
|
for line in log.splitlines():
|
|
matches = re.findall(regexp, line)
|
|
if len(matches) == 0:
|
|
continue
|
|
value = matches[0]
|
|
return value
|
|
|
|
def _extract_warm_start_value(self, log: str) -> Optional[float]:
|
|
value = self.__extract(log, self._get_warm_start_regexp())
|
|
if value is None:
|
|
return None
|
|
return float(value)
|
|
|
|
def _extract_node_count(self, log: str) -> Optional[int]:
|
|
value = self.__extract(log, self._get_node_count_regexp())
|
|
if value is None:
|
|
return None
|
|
return int(value)
|
|
|
|
def get_constraint_ids(self):
|
|
return list(self._cname_to_constr.keys())
|
|
|
|
def _get_warm_start_regexp(self) -> Optional[str]:
|
|
return None
|
|
|
|
def _get_node_count_regexp(self) -> Optional[str]:
|
|
return None
|
|
|
|
def relax(self) -> None:
|
|
for var in self._bin_vars:
|
|
lb, ub = var.bounds
|
|
var.setlb(lb)
|
|
var.setub(ub)
|
|
var.domain = pyomo.core.base.set_types.Reals
|
|
self._pyomo_solver.update_var(var)
|
|
|
|
def get_inequality_slacks(self) -> Dict[str, float]:
|
|
result: Dict[str, float] = {}
|
|
for (cname, cobj) in self._cname_to_constr.items():
|
|
if cobj.equality:
|
|
continue
|
|
result[cname] = cobj.slack()
|
|
return result
|
|
|
|
def get_constraint_sense(self, cid: str) -> str:
|
|
cobj = self._cname_to_constr[cid]
|
|
has_ub = cobj.has_ub()
|
|
has_lb = cobj.has_lb()
|
|
assert (not has_lb) or (not has_ub), "range constraints not supported"
|
|
if has_lb:
|
|
return ">"
|
|
elif has_ub:
|
|
return "<"
|
|
else:
|
|
return "="
|
|
|
|
def set_constraint_sense(self, cid: str, sense: str) -> None:
|
|
raise Exception("Not implemented")
|
|
|
|
def extract_constraint(self, cid: str) -> Constraint:
|
|
raise Exception("Not implemented")
|
|
|
|
def is_constraint_satisfied(self, cobj: Constraint) -> bool:
|
|
raise Exception("Not implemented")
|
|
|
|
def is_infeasible(self) -> bool:
|
|
return self._termination_condition == TerminationCondition.infeasible
|
|
|
|
def get_dual(self, cid):
|
|
raise Exception("Not implemented")
|
|
|
|
def get_sense(self) -> str:
|
|
return self._obj_sense
|