You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/solvers/internal.py

347 lines
11 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Optional, List, Tuple, TYPE_CHECKING
import numpy as np
from miplearn.instance.base import Instance
from miplearn.types import (
IterationCallback,
LazyCallback,
UserCutCallback,
Solution,
)
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from miplearn.features.sample import Sample
@dataclass
class LPSolveStats:
lp_log: Optional[str] = None
lp_value: Optional[float] = None
lp_wallclock_time: Optional[float] = None
def to_list(self) -> List[float]:
features: List[float] = []
for attr in ["lp_value", "lp_wallclock_time"]:
if getattr(self, attr) is not None:
features.append(getattr(self, attr))
return features
@dataclass
class MIPSolveStats:
mip_lower_bound: Optional[float] = None
mip_log: Optional[str] = None
mip_nodes: Optional[int] = None
mip_sense: Optional[str] = None
mip_upper_bound: Optional[float] = None
mip_wallclock_time: Optional[float] = None
mip_warm_start_value: Optional[float] = None
@dataclass
class Variables:
names: Optional[np.ndarray] = None
basis_status: Optional[np.ndarray] = None
lower_bounds: Optional[np.ndarray] = None
obj_coeffs: Optional[np.ndarray] = None
reduced_costs: Optional[np.ndarray] = None
sa_lb_down: Optional[np.ndarray] = None
sa_lb_up: Optional[np.ndarray] = None
sa_obj_down: Optional[np.ndarray] = None
sa_obj_up: Optional[np.ndarray] = None
sa_ub_down: Optional[np.ndarray] = None
sa_ub_up: Optional[np.ndarray] = None
types: Optional[np.ndarray] = None
upper_bounds: Optional[np.ndarray] = None
values: Optional[np.ndarray] = None
@dataclass
class Constraints:
basis_status: Optional[List[str]] = None
dual_values: Optional[np.ndarray] = None
lazy: Optional[List[bool]] = None
lhs: Optional[List[List[Tuple[bytes, float]]]] = None
names: Optional[np.ndarray] = None
rhs: Optional[np.ndarray] = None
sa_rhs_down: Optional[np.ndarray] = None
sa_rhs_up: Optional[np.ndarray] = None
senses: Optional[List[str]] = None
slacks: Optional[np.ndarray] = None
@staticmethod
def from_sample(sample: "Sample") -> "Constraints":
return Constraints(
basis_status=sample.get_vector("lp_constr_basis_status"),
dual_values=sample.get_vector("lp_constr_dual_values"),
lazy=sample.get_vector("static_constr_lazy"),
# lhs=sample.get_vector("static_constr_lhs"),
names=sample.get_array("static_constr_names"),
rhs=sample.get_vector("static_constr_rhs"),
sa_rhs_down=sample.get_vector("lp_constr_sa_rhs_down"),
sa_rhs_up=sample.get_vector("lp_constr_sa_rhs_up"),
senses=sample.get_vector("static_constr_senses"),
slacks=sample.get_vector("lp_constr_slacks"),
)
def __getitem__(self, selected: List[bool]) -> "Constraints":
return Constraints(
basis_status=self._filter(self.basis_status, selected),
dual_values=(
None if self.dual_values is None else self.dual_values[selected]
),
names=(None if self.names is None else self.names[selected]),
lazy=self._filter(self.lazy, selected),
lhs=self._filter(self.lhs, selected),
rhs=(None if self.rhs is None else self.rhs[selected]),
sa_rhs_down=(
None if self.sa_rhs_down is None else self.sa_rhs_down[selected]
),
sa_rhs_up=(None if self.sa_rhs_up is None else self.sa_rhs_up[selected]),
senses=self._filter(self.senses, selected),
slacks=(None if self.slacks is None else self.slacks[selected]),
)
def _filter(
self,
obj: Optional[List],
selected: List[bool],
) -> Optional[List]:
if obj is None:
return None
return [obj[i] for (i, selected_i) in enumerate(selected) if selected_i]
class InternalSolver(ABC):
"""
Abstract class representing the MIP solver used internally by LearningSolver.
"""
@abstractmethod
def add_constraints(self, cf: Constraints) -> None:
"""Adds the given constraints to the model."""
pass
@abstractmethod
def are_constraints_satisfied(
self,
cf: Constraints,
tol: float = 1e-5,
) -> List[bool]:
"""
Checks whether the current solution satisfies the given constraints.
"""
pass
def are_callbacks_supported(self) -> bool:
"""
Returns True if this solver supports native callbacks, such as lazy constraints
callback or user cuts callback.
"""
return False
@abstractmethod
def build_test_instance_infeasible(self) -> Instance:
"""
Returns an infeasible instance, for testing purposes.
"""
pass
@abstractmethod
def build_test_instance_knapsack(self) -> Instance:
"""
Returns an instance corresponding to the following MIP, for testing purposes:
maximize 505 x0 + 352 x1 + 458 x2 + 220 x3
s.t. eq_capacity: z = 23 x0 + 26 x1 + 20 x2 + 18 x3
x0, x1, x2, x3 binary
0 <= z <= 67 continuous
"""
pass
@abstractmethod
def clone(self) -> "InternalSolver":
"""
Returns a new copy of this solver with identical parameters, but otherwise
completely unitialized.
"""
pass
@abstractmethod
def fix(self, solution: Solution) -> None:
"""
Fixes the values of a subset of decision variables. Missing values in the
solution indicate variables that should be left free.
"""
pass
@abstractmethod
def get_solution(self) -> Optional[Solution]:
"""
Returns current solution found by the solver.
If called after `solve`, returns the best primal solution found during
the search. If called after `solve_lp`, returns the optimal solution
to the LP relaxation. If no primal solution is available, return None.
"""
pass
@abstractmethod
def get_constraint_attrs(self) -> List[str]:
"""
Returns a list of constraint attributes supported by this solver. Used for
testing purposes only.
"""
pass
@abstractmethod
def get_constraints(
self,
with_static: bool = True,
with_sa: bool = True,
with_lhs: bool = True,
) -> Constraints:
pass
@abstractmethod
def get_variable_attrs(self) -> List[str]:
"""
Returns a list of variable attributes supported by this solver. Used for
testing purposes only.
"""
pass
@abstractmethod
def get_variables(
self,
with_static: bool = True,
with_sa: bool = True,
) -> Variables:
"""
Returns a description of the decision variables in the problem.
Parameters
----------
with_static: bool
If True, include features that do not change during the solution process,
such as variable types and names. This parameter is used to reduce the
amount of duplicated data collected by LearningSolver. Features that do
not change are only collected once.
with_sa: bool
If True, collect sensitivity analysis information. For large models,
collecting this information may be expensive, so this parameter is useful
for reducing running times.
"""
pass
@abstractmethod
def is_infeasible(self) -> bool:
"""
Returns True if the model has been proved to be infeasible.
Must be called after solve.
"""
pass
@abstractmethod
def remove_constraints(self, names: np.ndarray) -> None:
"""
Removes the given constraints from the model.
"""
pass
@abstractmethod
def set_instance(
self,
instance: Instance,
model: Any = None,
) -> None:
"""
Loads the given instance into the solver.
Parameters
----------
instance: Instance
The instance to be loaded.
model: Any
The concrete optimization model corresponding to this instance
(e.g. JuMP.Model or pyomo.core.ConcreteModel). If not provided,
it will be generated by calling `instance.to_model()`.
"""
pass
@abstractmethod
def set_warm_start(self, solution: Solution) -> None:
"""
Sets the warm start to be used by the solver.
Only one warm start is supported. Calling this function when a warm start
already exists will remove the previous warm start.
"""
pass
@abstractmethod
def solve(
self,
tee: bool = False,
iteration_cb: Optional[IterationCallback] = None,
lazy_cb: Optional[LazyCallback] = None,
user_cut_cb: Optional[UserCutCallback] = None,
) -> MIPSolveStats:
"""
Solves the currently loaded instance. After this method finishes,
the best solution found can be retrieved by calling `get_solution`.
Parameters
----------
iteration_cb: IterationCallback
By default, InternalSolver makes a single call to the native `solve`
method and returns the result. If an iteration callback is provided
instead, InternalSolver enters a loop, where `solve` and `iteration_cb`
are called alternatively. To stop the loop, `iteration_cb` should return
False. Any other result causes the solver to loop again.
lazy_cb: LazyCallback
This function is called whenever the solver finds a new candidate
solution and can be used to add lazy constraints to the model. Only the
following operations within the callback are allowed:
- Querying the value of a variable
- Querying if a constraint is satisfied
- Adding a new constraint to the problem
Additional operations may be allowed by specific subclasses.
user_cut_cb: UserCutCallback
This function is called whenever the solver found a new integer-infeasible
solution and needs to generate cutting planes to cut it off.
tee: bool
If true, prints the solver log to the screen.
"""
pass
@abstractmethod
def solve_lp(
self,
tee: bool = False,
) -> LPSolveStats:
"""
Solves the LP relaxation of the currently loaded instance. After this
method finishes, the solution can be retrieved by calling `get_solution`.
This method should not permanently modify the problem. That is, subsequent
calls to `solve` should solve the original MIP, not the LP relaxation.
Parameters
----------
tee
If true, prints the solver log to the screen.
"""
pass