You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
300 lines
9.9 KiB
300 lines
9.9 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from typing import Any, List
|
|
|
|
import numpy as np
|
|
|
|
from miplearn.solvers.internal import InternalSolver, Variables, Constraints
|
|
|
|
inf = float("inf")
|
|
|
|
|
|
# NOTE:
|
|
# This file is in the main source folder, so that it can be called from Julia.
|
|
|
|
|
|
def _filter_attrs(allowed_keys: List[str], obj: Any) -> Any:
|
|
for key in obj.__dict__.keys():
|
|
if key not in allowed_keys:
|
|
setattr(obj, key, None)
|
|
return obj
|
|
|
|
|
|
def run_internal_solver_tests(solver: InternalSolver) -> None:
|
|
run_basic_usage_tests(solver.clone())
|
|
run_warm_start_tests(solver.clone())
|
|
run_infeasibility_tests(solver.clone())
|
|
run_iteration_cb_tests(solver.clone())
|
|
if solver.are_callbacks_supported():
|
|
run_lazy_cb_tests(solver.clone())
|
|
|
|
|
|
def run_basic_usage_tests(solver: InternalSolver) -> None:
|
|
# Create and set instance
|
|
instance = solver.build_test_instance_knapsack()
|
|
model = instance.to_model()
|
|
solver.set_instance(instance, model)
|
|
|
|
# Fetch variables (after-load)
|
|
assert_equals(
|
|
solver.get_variables(),
|
|
Variables(
|
|
names=np.array(["x[0]", "x[1]", "x[2]", "x[3]", "z"], dtype="S"),
|
|
lower_bounds=np.array([0.0, 0.0, 0.0, 0.0, 0.0]),
|
|
upper_bounds=np.array([1.0, 1.0, 1.0, 1.0, 67.0]),
|
|
types=np.array(["B", "B", "B", "B", "C"], dtype="S"),
|
|
obj_coeffs=np.array([505.0, 352.0, 458.0, 220.0, 0.0]),
|
|
),
|
|
)
|
|
|
|
# Fetch constraints (after-load)
|
|
assert_equals(
|
|
solver.get_constraints(),
|
|
Constraints(
|
|
names=np.array(["eq_capacity"], dtype="S"),
|
|
rhs=np.array([0.0]),
|
|
lhs=[
|
|
[
|
|
(b"x[0]", 23.0),
|
|
(b"x[1]", 26.0),
|
|
(b"x[2]", 20.0),
|
|
(b"x[3]", 18.0),
|
|
(b"z", -1.0),
|
|
],
|
|
],
|
|
senses=["="],
|
|
),
|
|
)
|
|
|
|
# Solve linear programming relaxation
|
|
lp_stats = solver.solve_lp()
|
|
assert not solver.is_infeasible()
|
|
assert lp_stats.lp_value is not None
|
|
assert_equals(round(lp_stats.lp_value, 3), 1287.923)
|
|
assert lp_stats.lp_log is not None
|
|
assert len(lp_stats.lp_log) > 100
|
|
assert lp_stats.lp_wallclock_time is not None
|
|
assert lp_stats.lp_wallclock_time > 0
|
|
|
|
# Fetch variables (after-lp)
|
|
assert_equals(
|
|
solver.get_variables(with_static=False),
|
|
_filter_attrs(
|
|
solver.get_variable_attrs(),
|
|
Variables(
|
|
names=np.array(["x[0]", "x[1]", "x[2]", "x[3]", "z"], dtype="S"),
|
|
basis_status=np.array(["U", "B", "U", "L", "U"], dtype="S"),
|
|
reduced_costs=np.array(
|
|
[193.615385, 0.0, 187.230769, -23.692308, 13.538462]
|
|
),
|
|
sa_lb_down=np.array([-inf, -inf, -inf, -0.111111, -inf]),
|
|
sa_lb_up=np.array([1.0, 0.923077, 1.0, 1.0, 67.0]),
|
|
sa_obj_down=np.array(
|
|
[311.384615, 317.777778, 270.769231, -inf, -13.538462]
|
|
),
|
|
sa_obj_up=np.array([inf, 570.869565, inf, 243.692308, inf]),
|
|
sa_ub_down=np.array([0.913043, 0.923077, 0.9, 0.0, 43.0]),
|
|
sa_ub_up=np.array([2.043478, inf, 2.2, inf, 69.0]),
|
|
values=np.array([1.0, 0.923077, 1.0, 0.0, 67.0]),
|
|
),
|
|
),
|
|
)
|
|
|
|
# Fetch constraints (after-lp)
|
|
assert_equals(
|
|
solver.get_constraints(with_static=False),
|
|
_filter_attrs(
|
|
solver.get_constraint_attrs(),
|
|
Constraints(
|
|
basis_status=["N"],
|
|
dual_values=np.array([13.538462]),
|
|
names=np.array(["eq_capacity"], dtype="S"),
|
|
sa_rhs_down=np.array([-24.0]),
|
|
sa_rhs_up=np.array([2.0]),
|
|
slacks=np.array([0.0]),
|
|
),
|
|
),
|
|
)
|
|
|
|
# Solve MIP
|
|
mip_stats = solver.solve(
|
|
tee=True,
|
|
)
|
|
assert not solver.is_infeasible()
|
|
assert mip_stats.mip_log is not None
|
|
assert len(mip_stats.mip_log) > 100
|
|
assert mip_stats.mip_lower_bound is not None
|
|
assert_equals(mip_stats.mip_lower_bound, 1183.0)
|
|
assert mip_stats.mip_upper_bound is not None
|
|
assert_equals(mip_stats.mip_upper_bound, 1183.0)
|
|
assert mip_stats.mip_sense is not None
|
|
assert_equals(mip_stats.mip_sense, "max")
|
|
assert mip_stats.mip_wallclock_time is not None
|
|
assert isinstance(mip_stats.mip_wallclock_time, float)
|
|
assert mip_stats.mip_wallclock_time > 0
|
|
|
|
# Fetch variables (after-mip)
|
|
assert_equals(
|
|
solver.get_variables(with_static=False),
|
|
_filter_attrs(
|
|
solver.get_variable_attrs(),
|
|
Variables(
|
|
names=np.array(["x[0]", "x[1]", "x[2]", "x[3]", "z"], dtype="S"),
|
|
values=np.array([1.0, 0.0, 1.0, 1.0, 61.0]),
|
|
),
|
|
),
|
|
)
|
|
|
|
# Fetch constraints (after-mip)
|
|
assert_equals(
|
|
solver.get_constraints(with_static=False),
|
|
_filter_attrs(
|
|
solver.get_constraint_attrs(),
|
|
Constraints(
|
|
names=np.array(["eq_capacity"], dtype="S"),
|
|
slacks=np.array([0.0]),
|
|
),
|
|
),
|
|
)
|
|
|
|
# Build new constraint and verify that it is violated
|
|
cf = Constraints(
|
|
names=np.array(["cut"], dtype="S"),
|
|
lhs=[[(b"x[0]", 1.0)]],
|
|
rhs=np.array([0.0]),
|
|
senses=["<"],
|
|
)
|
|
assert_equals(solver.are_constraints_satisfied(cf), [False])
|
|
|
|
# Add constraint and verify it affects solution
|
|
solver.add_constraints(cf)
|
|
assert_equals(
|
|
solver.get_constraints(with_static=True),
|
|
_filter_attrs(
|
|
solver.get_constraint_attrs(),
|
|
Constraints(
|
|
names=np.array(["eq_capacity", "cut"], dtype="S"),
|
|
rhs=np.array([0.0, 0.0]),
|
|
lhs=[
|
|
[
|
|
(b"x[0]", 23.0),
|
|
(b"x[1]", 26.0),
|
|
(b"x[2]", 20.0),
|
|
(b"x[3]", 18.0),
|
|
(b"z", -1.0),
|
|
],
|
|
[
|
|
(b"x[0]", 1.0),
|
|
],
|
|
],
|
|
senses=["=", "<"],
|
|
),
|
|
),
|
|
)
|
|
stats = solver.solve()
|
|
assert_equals(stats.mip_lower_bound, 1030.0)
|
|
assert_equals(solver.are_constraints_satisfied(cf), [True])
|
|
|
|
# Remove the new constraint
|
|
solver.remove_constraints(np.array(["cut"], dtype="S"))
|
|
|
|
# New constraint should no longer affect solution
|
|
stats = solver.solve()
|
|
assert_equals(stats.mip_lower_bound, 1183.0)
|
|
|
|
|
|
def run_warm_start_tests(solver: InternalSolver) -> None:
|
|
instance = solver.build_test_instance_knapsack()
|
|
model = instance.to_model()
|
|
solver.set_instance(instance, model)
|
|
solver.set_warm_start({b"x[0]": 1.0, b"x[1]": 0.0, b"x[2]": 0.0, b"x[3]": 1.0})
|
|
stats = solver.solve(tee=True)
|
|
if stats.mip_warm_start_value is not None:
|
|
assert_equals(stats.mip_warm_start_value, 725.0)
|
|
|
|
solver.set_warm_start({b"x[0]": 1.0, b"x[1]": 1.0, b"x[2]": 1.0, b"x[3]": 1.0})
|
|
stats = solver.solve(tee=True)
|
|
assert stats.mip_warm_start_value is None
|
|
|
|
solver.fix({b"x[0]": 1.0, b"x[1]": 0.0, b"x[2]": 0.0, b"x[3]": 1.0})
|
|
stats = solver.solve(tee=True)
|
|
assert_equals(stats.mip_lower_bound, 725.0)
|
|
assert_equals(stats.mip_upper_bound, 725.0)
|
|
|
|
|
|
def run_infeasibility_tests(solver: InternalSolver) -> None:
|
|
instance = solver.build_test_instance_infeasible()
|
|
solver.set_instance(instance)
|
|
mip_stats = solver.solve()
|
|
assert solver.is_infeasible()
|
|
assert solver.get_solution() is None
|
|
assert mip_stats.mip_upper_bound is None
|
|
assert mip_stats.mip_lower_bound is None
|
|
lp_stats = solver.solve_lp()
|
|
assert solver.get_solution() is None
|
|
assert lp_stats.lp_value is None
|
|
|
|
|
|
def run_iteration_cb_tests(solver: InternalSolver) -> None:
|
|
instance = solver.build_test_instance_knapsack()
|
|
solver.set_instance(instance)
|
|
count = 0
|
|
|
|
def custom_iteration_cb() -> bool:
|
|
nonlocal count
|
|
count += 1
|
|
return count < 5
|
|
|
|
solver.solve(iteration_cb=custom_iteration_cb)
|
|
assert_equals(count, 5)
|
|
|
|
|
|
def run_lazy_cb_tests(solver: InternalSolver) -> None:
|
|
instance = solver.build_test_instance_knapsack()
|
|
model = instance.to_model()
|
|
|
|
def lazy_cb(cb_solver: InternalSolver, cb_model: Any) -> None:
|
|
relsol = cb_solver.get_solution()
|
|
assert relsol is not None
|
|
assert relsol[b"x[0]"] is not None
|
|
if relsol[b"x[0]"] > 0:
|
|
instance.enforce_lazy_constraint(cb_solver, cb_model, "cut")
|
|
|
|
solver.set_instance(instance, model)
|
|
solver.solve(lazy_cb=lazy_cb)
|
|
solution = solver.get_solution()
|
|
assert solution is not None
|
|
assert_equals(solution[b"x[0]"], 0.0)
|
|
|
|
|
|
def _equals_preprocess(obj: Any) -> Any:
|
|
if isinstance(obj, np.ndarray):
|
|
if obj.dtype == "float64":
|
|
return np.round(obj, decimals=6).tolist()
|
|
else:
|
|
return obj.tolist()
|
|
elif isinstance(obj, (int, str, bool, np.bool_, np.bytes_, bytes)):
|
|
return obj
|
|
elif isinstance(obj, float):
|
|
return round(obj, 6)
|
|
elif isinstance(obj, list):
|
|
return [_equals_preprocess(i) for i in obj]
|
|
elif isinstance(obj, tuple):
|
|
return tuple(_equals_preprocess(i) for i in obj)
|
|
elif obj is None:
|
|
return None
|
|
elif isinstance(obj, dict):
|
|
return {k: _equals_preprocess(v) for (k, v) in obj.items()}
|
|
else:
|
|
for key in obj.__dict__.keys():
|
|
obj.__dict__[key] = _equals_preprocess(obj.__dict__[key])
|
|
return obj
|
|
|
|
|
|
def assert_equals(left: Any, right: Any) -> None:
|
|
left = _equals_preprocess(left)
|
|
right = _equals_preprocess(right)
|
|
assert left == right, f"left:\n{left}\nright:\n{right}"
|