Files
MIPLearn/tests/problems/test_multiknapsack.py

65 lines
2.0 KiB
Python

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from scipy.stats import uniform, randint
from miplearn.problems.multiknapsack import (
MultiKnapsackGenerator,
MultiKnapsackData,
build_multiknapsack_model_gurobipy,
)
def test_knapsack_generator() -> None:
np.random.seed(42)
gen = MultiKnapsackGenerator(
n=randint(low=5, high=6),
m=randint(low=3, high=4),
w=randint(low=0, high=1000),
K=randint(low=500, high=501),
u=uniform(loc=0.0, scale=1.0),
alpha=uniform(loc=0.25, scale=0.0),
)
data = gen.generate(1)
assert data[0].prices.tolist() == [380.0, 521.0, 729.0, 476.0, 466.0]
assert data[0].capacities.tolist() == [443.0, 382.0, 389.0]
assert data[0].weights.tolist() == [
[102, 435, 860, 270, 106],
[71, 700, 20, 614, 121],
[466, 214, 330, 458, 87],
]
def test_knapsack_generator_callable() -> None:
np.random.seed(42)
gen = MultiKnapsackGenerator(
n=randint(low=10, high=11),
m=lambda n: n // 3,
w=randint(low=0, high=1000),
K=randint(low=500, high=501),
u=uniform(loc=0.0, scale=1.0),
alpha=uniform(loc=0.25, scale=0.0),
)
data = gen.generate(1)[0]
assert data.weights.shape[1] == 10
assert data.weights.shape[0] == 3
def test_knapsack_model() -> None:
data = MultiKnapsackData(
prices=np.array([344.0, 527.0, 658.0, 519.0, 460.0]),
capacities=np.array([449.0, 377.0, 380.0]),
weights=np.array(
[
[92.0, 473.0, 871.0, 264.0, 96.0],
[67.0, 664.0, 21.0, 628.0, 129.0],
[436.0, 209.0, 309.0, 481.0, 86.0],
]
),
)
model = build_multiknapsack_model_gurobipy(data)
model.optimize()
assert model.inner.objVal == -460.0