You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/components/test_primal.py

158 lines
4.8 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from unittest.mock import Mock
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from scipy.stats import randint
from miplearn.classifiers import Classifier
from miplearn.classifiers.threshold import Threshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.primal import PrimalSolutionComponent
from miplearn.features.sample import Sample, MemorySample
from miplearn.problems.tsp import TravelingSalesmanGenerator
from miplearn.solvers.learning import LearningSolver
from miplearn.solvers.tests import assert_equals
@pytest.fixture
def sample() -> Sample:
sample = MemorySample(
{
"var_names": ["x[0]", "x[1]", "x[2]", "x[3]"],
"var_categories": ["default", None, "default", "default"],
"mip_var_values": [0.0, 1.0, 1.0, 0.0],
"instance_features_user": [5.0],
"var_features": [
[0.0, 0.0],
None,
[1.0, 0.0],
[1.0, 1.0],
],
"lp_var_features": [
[0.0, 0.0, 2.0, 2.0],
None,
[1.0, 0.0, 3.0, 2.0],
[1.0, 1.0, 3.0, 3.0],
],
},
)
return sample
def test_xy(sample: Sample) -> None:
x_expected = {
"default": [
[5.0, 0.0, 0.0, 2.0, 2.0],
[5.0, 1.0, 0.0, 3.0, 2.0],
[5.0, 1.0, 1.0, 3.0, 3.0],
]
}
y_expected = {
"default": [
[True, False],
[False, True],
[True, False],
]
}
xy = PrimalSolutionComponent().sample_xy(None, sample)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
assert y_actual == y_expected
def test_fit_xy() -> None:
clf = Mock(spec=Classifier)
clf.clone = lambda: Mock(spec=Classifier) # type: ignore
thr = Mock(spec=Threshold)
thr.clone = lambda: Mock(spec=Threshold)
comp = PrimalSolutionComponent(classifier=clf, threshold=thr)
x = {
"type-a": np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]),
"type-b": np.array([[7.0, 8.0, 9.0]]),
}
y = {
"type-a": np.array([[True, False], [False, True]]),
"type-b": np.array([[True, False]]),
}
comp.fit_xy(x, y)
for category in ["type-a", "type-b"]:
assert category in comp.classifiers
assert category in comp.thresholds
clf = comp.classifiers[category] # type: ignore
clf.fit.assert_called_once()
assert_array_equal(x[category], clf.fit.call_args[0][0])
assert_array_equal(y[category], clf.fit.call_args[0][1])
thr = comp.thresholds[category] # type: ignore
thr.fit.assert_called_once()
assert_array_equal(x[category], thr.fit.call_args[0][1])
assert_array_equal(y[category], thr.fit.call_args[0][2])
def test_usage() -> None:
solver = LearningSolver(
components=[
PrimalSolutionComponent(),
]
)
gen = TravelingSalesmanGenerator(n=randint(low=5, high=6))
instance = gen.generate(1)[0]
solver.solve(instance)
solver.fit([instance])
stats = solver.solve(instance)
assert stats["Primal: Free"] == 0
assert stats["Primal: One"] + stats["Primal: Zero"] == 10
assert stats["mip_lower_bound"] == stats["mip_warm_start_value"]
def test_evaluate(sample: Sample) -> None:
comp = PrimalSolutionComponent()
comp.sample_predict = lambda _: { # type: ignore
"x[0]": 1.0,
"x[1]": 1.0,
"x[2]": 0.0,
"x[3]": None,
}
ev = comp.sample_evaluate(None, sample)
assert_equals(
ev,
{
"0": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=2),
"1": classifier_evaluation_dict(tp=1, fp=1, tn=1, fn=1),
},
)
def test_predict(sample: Sample) -> None:
clf = Mock(spec=Classifier)
clf.predict_proba = Mock(
return_value=np.array(
[
[0.9, 0.1],
[0.5, 0.5],
[0.1, 0.9],
]
)
)
thr = Mock(spec=Threshold)
thr.predict = Mock(return_value=[0.75, 0.75])
comp = PrimalSolutionComponent()
x, _ = comp.sample_xy(None, sample)
comp.classifiers = {"default": clf}
comp.thresholds = {"default": thr}
pred = comp.sample_predict(sample)
clf.predict_proba.assert_called_once()
thr.predict.assert_called_once()
assert_array_equal(x["default"], clf.predict_proba.call_args[0][0])
assert_array_equal(x["default"], thr.predict.call_args[0][0])
assert pred == {
"x[0]": 0.0,
"x[1]": None,
"x[2]": None,
"x[3]": 1.0,
}