You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/problems/knapsack.py

248 lines
9.6 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import List, Dict, Optional
import numpy as np
import pyomo.environ as pe
from overrides import overrides
from scipy.stats import uniform, randint, rv_discrete
from scipy.stats.distributions import rv_frozen
from miplearn.instance.base import Instance
class ChallengeA:
"""
- 250 variables, 10 constraints, fixed weights
- w ~ U(0, 1000), jitter ~ U(0.95, 1.05)
- K = 500, u ~ U(0., 1.)
- alpha = 0.25
"""
def __init__(
self,
seed: int = 42,
n_training_instances: int = 500,
n_test_instances: int = 50,
) -> None:
np.random.seed(seed)
self.gen = MultiKnapsackGenerator(
n=randint(low=250, high=251),
m=randint(low=10, high=11),
w=uniform(loc=0.0, scale=1000.0),
K=uniform(loc=500.0, scale=0.0),
u=uniform(loc=0.0, scale=1.0),
alpha=uniform(loc=0.25, scale=0.0),
fix_w=True,
w_jitter=uniform(loc=0.95, scale=0.1),
)
np.random.seed(seed + 1)
self.training_instances = self.gen.generate(n_training_instances)
np.random.seed(seed + 2)
self.test_instances = self.gen.generate(n_test_instances)
class MultiKnapsackInstance(Instance):
"""Representation of the Multidimensional 0-1 Knapsack Problem.
Given a set of n items and m knapsacks, the problem is to find a subset of items
S maximizing sum(prices[i] for i in S). If selected, each item i occupies
weights[i,j] units of space in each knapsack j. Furthermore, each knapsack j has
limited storage space, given by capacities[j].
This implementation assigns a different category for each decision variable,
and therefore trains one ML model per variable. It is only suitable when training
and test instances have same size and items don't shuffle around.
"""
def __init__(
self,
prices: np.ndarray,
capacities: np.ndarray,
weights: np.ndarray,
) -> None:
super().__init__()
assert isinstance(prices, np.ndarray)
assert isinstance(capacities, np.ndarray)
assert isinstance(weights, np.ndarray)
assert len(weights.shape) == 2
self.m, self.n = weights.shape
assert prices.shape == (self.n,)
assert capacities.shape == (self.m,)
self.prices = prices
self.capacities = capacities
self.weights = weights
@overrides
def to_model(self) -> pe.ConcreteModel:
model = pe.ConcreteModel()
model.x = pe.Var(range(self.n), domain=pe.Binary)
model.OBJ = pe.Objective(
expr=sum(model.x[j] * self.prices[j] for j in range(self.n)),
sense=pe.maximize,
)
model.eq_capacity = pe.ConstraintList()
for i in range(self.m):
model.eq_capacity.add(
sum(model.x[j] * self.weights[i, j] for j in range(self.n))
<= self.capacities[i]
)
return model
@overrides
def get_instance_features(self) -> np.ndarray:
return np.array([float(np.mean(self.prices))] + list(self.capacities))
@overrides
def get_variable_features(self, names: np.ndarray) -> np.ndarray:
features = []
for i in range(len(self.weights)):
f = [self.prices[i]]
f.extend(self.weights[:, i])
features.append(f)
return np.array(features)
# noinspection PyPep8Naming
class MultiKnapsackGenerator:
def __init__(
self,
n: rv_frozen = randint(low=100, high=101),
m: rv_frozen = randint(low=30, high=31),
w: rv_frozen = randint(low=0, high=1000),
K: rv_frozen = randint(low=500, high=501),
u: rv_frozen = uniform(loc=0.0, scale=1.0),
alpha: rv_frozen = uniform(loc=0.25, scale=0.0),
fix_w: bool = False,
w_jitter: rv_frozen = uniform(loc=1.0, scale=0.0),
round: bool = True,
):
"""Initialize the problem generator.
Instances have a random number of items (or variables) and a random number of
knapsacks (or constraints), as specified by the provided probability
distributions `n` and `m`, respectively. The weight of each item `i` on
knapsack `j` is sampled independently from the provided distribution `w`. The
capacity of knapsack `j` is set to:
alpha_j * sum(w[i,j] for i in range(n)),
where `alpha_j`, the tightness ratio, is sampled from the provided
probability distribution `alpha`. To make the instances more challenging,
the costs of the items are linearly correlated to their average weights. More
specifically, the weight of each item `i` is set to:
sum(w[i,j]/m for j in range(m)) + K * u_i,
where `K`, the correlation coefficient, and `u_i`, the correlation
multiplier, are sampled from the provided probability distributions. Note
that `K` is only sample once for the entire instance.
If fix_w=True is provided, then w[i,j] are kept the same in all generated
instances. This also implies that n and m are kept fixed. Although the prices
and capacities are derived from w[i,j], as long as u and K are not constants,
the generated instances will still not be completely identical.
If a probability distribution w_jitter is provided, then item weights will be
set to w[i,j] * gamma[i,j] where gamma[i,j] is sampled from w_jitter. When
combined with fix_w=True, this argument may be used to generate instances
where the weight of each item is roughly the same, but not exactly identical,
across all instances. The prices of the items and the capacities of the
knapsacks will be calculated as above, but using these perturbed weights
instead.
By default, all generated prices, weights and capacities are rounded to the
nearest integer number. If `round=False` is provided, this rounding will be
disabled.
Parameters
----------
n: rv_discrete
Probability distribution for the number of items (or variables)
m: rv_discrete
Probability distribution for the number of knapsacks (or constraints)
w: rv_continuous
Probability distribution for the item weights
K: rv_continuous
Probability distribution for the profit correlation coefficient
u: rv_continuous
Probability distribution for the profit multiplier
alpha: rv_continuous
Probability distribution for the tightness ratio
fix_w: boolean
If true, weights are kept the same (minus the noise from w_jitter) in all
instances
w_jitter: rv_continuous
Probability distribution for random noise added to the weights
round: boolean
If true, all prices, weights and capacities are rounded to the nearest
integer
"""
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
assert isinstance(m, rv_frozen), "m should be a SciPy probability distribution"
assert isinstance(w, rv_frozen), "w should be a SciPy probability distribution"
assert isinstance(K, rv_frozen), "K should be a SciPy probability distribution"
assert isinstance(u, rv_frozen), "u should be a SciPy probability distribution"
assert isinstance(
alpha, rv_frozen
), "alpha should be a SciPy probability distribution"
assert isinstance(fix_w, bool), "fix_w should be boolean"
assert isinstance(
w_jitter, rv_frozen
), "w_jitter should be a SciPy probability distribution"
self.n = n
self.m = m
self.w = w
self.u = u
self.K = K
self.alpha = alpha
self.w_jitter = w_jitter
self.round = round
self.fix_n: Optional[int] = None
self.fix_m: Optional[int] = None
self.fix_w: Optional[np.ndarray] = None
self.fix_u: Optional[np.ndarray] = None
self.fix_K: Optional[float] = None
if fix_w:
self.fix_n = self.n.rvs()
self.fix_m = self.m.rvs()
self.fix_w = np.array([self.w.rvs(self.fix_n) for _ in range(self.fix_m)])
self.fix_u = self.u.rvs(self.fix_n)
self.fix_K = self.K.rvs()
def generate(self, n_samples: int) -> List[MultiKnapsackInstance]:
def _sample() -> MultiKnapsackInstance:
if self.fix_w is not None:
assert self.fix_m is not None
assert self.fix_n is not None
assert self.fix_u is not None
assert self.fix_K is not None
n = self.fix_n
m = self.fix_m
w = self.fix_w
u = self.fix_u
K = self.fix_K
else:
n = self.n.rvs()
m = self.m.rvs()
w = np.array([self.w.rvs(n) for _ in range(m)])
u = self.u.rvs(n)
K = self.K.rvs()
w = w * np.array([self.w_jitter.rvs(n) for _ in range(m)])
alpha = self.alpha.rvs(m)
p = np.array([w[:, j].sum() / m + K * u[j] for j in range(n)])
b = np.array([w[i, :].sum() * alpha[i] for i in range(m)])
if self.round:
p = p.round()
b = b.round()
w = w.round()
return MultiKnapsackInstance(p, b, w)
return [_sample() for _ in range(n_samples)]