You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/components/lazy_static.py

209 lines
7.2 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
from typing import Dict, Tuple, List, Hashable, Any, TYPE_CHECKING, Set
import numpy as np
from miplearn import Classifier
from miplearn.classifiers.counting import CountingClassifier
from miplearn.classifiers.threshold import MinProbabilityThreshold, Threshold
from miplearn.components.component import Component
from miplearn.types import TrainingSample, Features, LearningSolveStats
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from miplearn.solvers.learning import LearningSolver, Instance
class LazyConstraint:
def __init__(self, cid: str, obj: Any) -> None:
self.cid = cid
self.obj = obj
class StaticLazyConstraintsComponent(Component):
"""
Component that decides which of the constraints tagged as lazy should
be kept in the formulation, and which should be removed.
"""
def __init__(
self,
classifier: Classifier = CountingClassifier(),
threshold: Threshold = MinProbabilityThreshold([0.50, 0.50]),
violation_tolerance: float = -0.5,
) -> None:
assert isinstance(classifier, Classifier)
self.classifier_prototype: Classifier = classifier
self.threshold_prototype: Threshold = threshold
self.classifiers: Dict[Hashable, Classifier] = {}
self.thresholds: Dict[Hashable, Threshold] = {}
self.pool: Dict[str, LazyConstraint] = {}
self.violation_tolerance: float = violation_tolerance
self.enforced_cids: Set[str] = set()
self.n_restored: int = 0
self.n_iterations: int = 0
def before_solve_mip(
self,
solver: "LearningSolver",
instance: "Instance",
model: Any,
stats: LearningSolveStats,
features: Features,
training_data: TrainingSample,
) -> None:
assert solver.internal_solver is not None
assert features.instance is not None
assert features.constraints is not None
if not features.instance.lazy_constraint_count == 0:
logger.info("Instance does not have static lazy constraints. Skipping.")
logger.info("Predicting required lazy constraints...")
self.enforced_cids = set(self.sample_predict(features, training_data))
logger.info("Moving lazy constraints to the pool...")
self.pool = {}
for (cid, cdict) in features.constraints.items():
if cdict.lazy and cid not in self.enforced_cids:
self.pool[cid] = LazyConstraint(
cid=cid,
obj=solver.internal_solver.extract_constraint(cid),
)
logger.info(
f"{len(self.enforced_cids)} lazy constraints kept; "
f"{len(self.pool)} moved to the pool"
)
stats["LazyStatic: Removed"] = len(self.pool)
stats["LazyStatic: Kept"] = len(self.enforced_cids)
stats["LazyStatic: Restored"] = 0
self.n_restored = 0
self.n_iterations = 0
def after_solve_mip(
self,
solver: "LearningSolver",
instance: "Instance",
model: Any,
stats: LearningSolveStats,
features: Features,
training_data: TrainingSample,
) -> None:
training_data.lazy_enforced = self.enforced_cids
stats["LazyStatic: Restored"] = self.n_restored
stats["LazyStatic: Iterations"] = self.n_iterations
def iteration_cb(
self,
solver: "LearningSolver",
instance: "Instance",
model: Any,
) -> bool:
if solver.use_lazy_cb:
return False
else:
return self._check_and_add(solver)
def lazy_cb(
self,
solver: "LearningSolver",
instance: "Instance",
model: Any,
) -> None:
self._check_and_add(solver)
def _check_and_add(self, solver: "LearningSolver") -> bool:
assert solver.internal_solver is not None
logger.info("Finding violated lazy constraints...")
enforced: List[LazyConstraint] = []
for (cid, c) in self.pool.items():
if not solver.internal_solver.is_constraint_satisfied(
c.obj,
tol=self.violation_tolerance,
):
enforced.append(c)
logger.info(f"{len(enforced)} violations found")
for c in enforced:
del self.pool[c.cid]
solver.internal_solver.add_constraint(c.obj)
self.enforced_cids.add(c.cid)
self.n_restored += 1
logger.info(
f"{len(enforced)} constraints restored; {len(self.pool)} in the pool"
)
if len(enforced) > 0:
self.n_iterations += 1
return True
else:
return False
def sample_predict(
self,
features: Features,
sample: TrainingSample,
) -> List[str]:
assert features.constraints is not None
x, y = self.sample_xy(features, sample)
category_to_cids: Dict[Hashable, List[str]] = {}
for (cid, cfeatures) in features.constraints.items():
if cfeatures.category is None:
continue
category = cfeatures.category
if category not in category_to_cids:
category_to_cids[category] = []
category_to_cids[category] += [cid]
enforced_cids: List[str] = []
for category in x.keys():
if category not in self.classifiers:
continue
npx = np.array(x[category])
proba = self.classifiers[category].predict_proba(npx)
thr = self.thresholds[category].predict(npx)
pred = list(proba[:, 1] > thr[1])
for (i, is_selected) in enumerate(pred):
if is_selected:
enforced_cids += [category_to_cids[category][i]]
return enforced_cids
@staticmethod
def sample_xy(
features: Features,
sample: TrainingSample,
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
assert features.constraints is not None
x: Dict = {}
y: Dict = {}
for (cid, cfeatures) in features.constraints.items():
if not cfeatures.lazy:
continue
category = cfeatures.category
if category is None:
continue
if category not in x:
x[category] = []
y[category] = []
x[category] += [cfeatures.user_features]
if sample.lazy_enforced is not None:
if cid in sample.lazy_enforced:
y[category] += [[False, True]]
else:
y[category] += [[True, False]]
return x, y
def fit_xy(
self,
x: Dict[Hashable, np.ndarray],
y: Dict[Hashable, np.ndarray],
) -> None:
for c in y.keys():
assert c in x
self.classifiers[c] = self.classifier_prototype.clone()
self.thresholds[c] = self.threshold_prototype.clone()
self.classifiers[c].fit(x[c], y[c])
self.thresholds[c].fit(self.classifiers[c], x[c], y[c])