You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/components/lazy_dynamic.py

174 lines
6.7 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
import sys
from typing import Any, Dict, List, TYPE_CHECKING, Set, Hashable
import numpy as np
from tqdm.auto import tqdm
from miplearn.classifiers import Classifier
from miplearn.classifiers.counting import CountingClassifier
from miplearn.components import classifier_evaluation_dict
from miplearn.components.component import Component
from miplearn.extractors import InstanceFeaturesExtractor
from miplearn.features import TrainingSample
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from miplearn.solvers.learning import LearningSolver, Instance
class DynamicLazyConstraintsComponent(Component):
"""
A component that predicts which lazy constraints to enforce.
"""
def __init__(
self,
classifier: Classifier = CountingClassifier(),
threshold: float = 0.05,
):
assert isinstance(classifier, Classifier)
self.threshold: float = threshold
self.classifier_prototype: Classifier = classifier
self.classifiers: Dict[Any, Classifier] = {}
self.known_cids: List[str] = []
def before_solve_mip(
self,
solver,
instance,
model,
stats,
features,
training_data,
):
instance.found_violated_lazy_constraints = []
logger.info("Predicting violated lazy constraints...")
violations = self.predict(instance)
logger.info("Enforcing %d lazy constraints..." % len(violations))
for v in violations:
cut = instance.build_lazy_constraint(model, v)
solver.internal_solver.add_constraint(cut)
def iteration_cb(self, solver, instance, model):
logger.debug("Finding violated (dynamic) lazy constraints...")
violations = instance.find_violated_lazy_constraints(model)
if len(violations) == 0:
return False
instance.found_violated_lazy_constraints += violations
logger.debug(" %d violations found" % len(violations))
for v in violations:
cut = instance.build_lazy_constraint(model, v)
solver.internal_solver.add_constraint(cut)
return True
def fit(self, training_instances):
logger.debug("Fitting...")
features = InstanceFeaturesExtractor().extract(training_instances)
self.classifiers = {}
violation_to_instance_idx = {}
for (idx, instance) in enumerate(training_instances):
for v in instance.found_violated_lazy_constraints:
if isinstance(v, list):
v = tuple(v)
if v not in self.classifiers:
self.classifiers[v] = self.classifier_prototype.clone()
violation_to_instance_idx[v] = []
violation_to_instance_idx[v] += [idx]
for (v, classifier) in tqdm(
self.classifiers.items(),
desc="Fit (lazy)",
disable=not sys.stdout.isatty(),
):
logger.debug("Training: %s" % (str(v)))
label = [[True, False] for i in training_instances]
for idx in violation_to_instance_idx[v]:
label[idx] = [False, True]
label = np.array(label, dtype=np.bool8)
classifier.fit(features, label)
def predict(self, instance):
violations = []
features = InstanceFeaturesExtractor().extract([instance])
for (v, classifier) in self.classifiers.items():
proba = classifier.predict_proba(features)
if proba[0][1] > self.threshold:
violations += [v]
return violations
def evaluate(self, instances):
results = {}
all_violations = set()
for instance in instances:
all_violations |= set(instance.found_violated_lazy_constraints)
for idx in tqdm(
range(len(instances)),
desc="Evaluate (lazy)",
disable=not sys.stdout.isatty(),
):
instance = instances[idx]
condition_positive = set(instance.found_violated_lazy_constraints)
condition_negative = all_violations - condition_positive
pred_positive = set(self.predict(instance)) & all_violations
pred_negative = all_violations - pred_positive
tp = len(pred_positive & condition_positive)
tn = len(pred_negative & condition_negative)
fp = len(pred_positive & condition_negative)
fn = len(pred_negative & condition_positive)
results[idx] = classifier_evaluation_dict(tp, tn, fp, fn)
return results
def fit_new(self, training_instances: List["Instance"]) -> None:
# Update known_cids
self.known_cids.clear()
for instance in training_instances:
for sample in instance.training_data:
if sample.lazy_enforced is None:
continue
self.known_cids += list(sample.lazy_enforced)
self.known_cids = sorted(set(self.known_cids))
# Build x and y matrices
x: Dict[Hashable, List[List[float]]] = {}
y: Dict[Hashable, List[List[bool]]] = {}
for instance in training_instances:
for sample in instance.training_data:
if sample.lazy_enforced is None:
continue
for cid in self.known_cids:
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in x:
x[category] = []
y[category] = []
assert instance.features.instance is not None
assert instance.features.instance.user_features is not None
cfeatures = instance.get_constraint_features(cid)
assert cfeatures is not None
assert isinstance(cfeatures, list)
for ci in cfeatures:
assert isinstance(ci, float)
f = list(instance.features.instance.user_features)
f += cfeatures
x[category] += [f]
if cid in sample.lazy_enforced:
y[category] += [[False, True]]
else:
y[category] += [[True, False]]
# Train classifiers
for category in x.keys():
self.classifiers[category] = self.classifier_prototype.clone()
self.classifiers[category].fit(
np.array(x[category]),
np.array(y[category]),
)