You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/components/dynamic_common.py

181 lines
6.1 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import Dict, Hashable, List, Tuple, TYPE_CHECKING
import numpy as np
from overrides import overrides
from miplearn.classifiers import Classifier
from miplearn.classifiers.threshold import Threshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.component import Component
from miplearn.features import TrainingSample
import logging
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from miplearn.solvers.learning import Instance
class DynamicConstraintsComponent(Component):
"""
Base component used by both DynamicLazyConstraintsComponent and UserCutsComponent.
"""
def __init__(
self,
attr: str,
classifier: Classifier,
threshold: Threshold,
):
assert isinstance(classifier, Classifier)
self.threshold_prototype: Threshold = threshold
self.classifier_prototype: Classifier = classifier
self.classifiers: Dict[Hashable, Classifier] = {}
self.thresholds: Dict[Hashable, Threshold] = {}
self.known_cids: List[str] = []
self.attr = attr
def sample_xy_with_cids(
self,
instance: "Instance",
sample: TrainingSample,
) -> Tuple[
Dict[Hashable, List[List[float]]],
Dict[Hashable, List[List[bool]]],
Dict[Hashable, List[str]],
]:
x: Dict[Hashable, List[List[float]]] = {}
y: Dict[Hashable, List[List[bool]]] = {}
cids: Dict[Hashable, List[str]] = {}
for cid in self.known_cids:
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in x:
x[category] = []
y[category] = []
cids[category] = []
assert instance.features.instance is not None
assert instance.features.instance.user_features is not None
cfeatures = instance.get_constraint_features(cid)
assert cfeatures is not None
assert isinstance(cfeatures, list)
for ci in cfeatures:
assert isinstance(ci, float)
f = list(instance.features.instance.user_features)
f += cfeatures
x[category] += [f]
cids[category] += [cid]
if getattr(sample, self.attr) is not None:
if cid in getattr(sample, self.attr):
y[category] += [[False, True]]
else:
y[category] += [[True, False]]
return x, y, cids
@overrides
def sample_xy_old(
self,
instance: "Instance",
sample: TrainingSample,
) -> Tuple[Dict, Dict]:
x, y, _ = self.sample_xy_with_cids(instance, sample)
return x, y
def sample_predict(
self,
instance: "Instance",
sample: TrainingSample,
) -> List[Hashable]:
pred: List[Hashable] = []
if len(self.known_cids) == 0:
logger.info("Classifiers not fitted. Skipping.")
return pred
x, _, cids = self.sample_xy_with_cids(instance, sample)
for category in x.keys():
assert category in self.classifiers
assert category in self.thresholds
clf = self.classifiers[category]
thr = self.thresholds[category]
nx = np.array(x[category])
proba = clf.predict_proba(nx)
t = thr.predict(nx)
for i in range(proba.shape[0]):
if proba[i][1] > t[1]:
pred += [cids[category][i]]
return pred
@overrides
def fit(self, training_instances: List["Instance"]) -> None:
collected_cids = set()
for instance in training_instances:
instance.load()
for sample in instance.training_data:
if getattr(sample, self.attr) is None:
continue
collected_cids |= getattr(sample, self.attr)
instance.free()
self.known_cids.clear()
self.known_cids.extend(sorted(collected_cids))
super().fit(training_instances)
@overrides
def fit_xy(
self,
x: Dict[Hashable, np.ndarray],
y: Dict[Hashable, np.ndarray],
) -> None:
for category in x.keys():
self.classifiers[category] = self.classifier_prototype.clone()
self.thresholds[category] = self.threshold_prototype.clone()
npx = np.array(x[category])
npy = np.array(y[category])
self.classifiers[category].fit(npx, npy)
self.thresholds[category].fit(self.classifiers[category], npx, npy)
@overrides
def sample_evaluate_old(
self,
instance: "Instance",
sample: TrainingSample,
) -> Dict[Hashable, Dict[str, float]]:
assert getattr(sample, self.attr) is not None
pred = set(self.sample_predict(instance, sample))
tp: Dict[Hashable, int] = {}
tn: Dict[Hashable, int] = {}
fp: Dict[Hashable, int] = {}
fn: Dict[Hashable, int] = {}
for cid in self.known_cids:
category = instance.get_constraint_category(cid)
if category is None:
continue
if category not in tp.keys():
tp[category] = 0
tn[category] = 0
fp[category] = 0
fn[category] = 0
if cid in pred:
if cid in getattr(sample, self.attr):
tp[category] += 1
else:
fp[category] += 1
else:
if cid in getattr(sample, self.attr):
fn[category] += 1
else:
tn[category] += 1
return {
category: classifier_evaluation_dict(
tp=tp[category],
tn=tn[category],
fp=fp[category],
fn=fn[category],
)
for category in tp.keys()
}