You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/components/test_primal.py

332 lines
9.1 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import cast
from unittest.mock import Mock
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from scipy.stats import randint
from miplearn.classifiers import Classifier
from miplearn.classifiers.threshold import Threshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.primal import PrimalSolutionComponent
from miplearn.features import (
TrainingSample,
Variable,
Features,
Sample,
InstanceFeatures,
)
from miplearn.instance.base import Instance
from miplearn.problems.tsp import TravelingSalesmanGenerator
from miplearn.solvers.learning import LearningSolver
@pytest.fixture
def sample() -> Sample:
sample = Sample(
after_load=Features(
variables={
"x[0]": Variable(category="default"),
"x[1]": Variable(category=None),
"x[2]": Variable(category="default"),
"x[3]": Variable(category="default"),
},
),
after_lp=Features(
instance=InstanceFeatures(),
variables={
"x[0]": Variable(),
"x[1]": Variable(),
"x[2]": Variable(),
"x[3]": Variable(),
},
),
after_mip=Features(
variables={
"x[0]": Variable(value=0.0),
"x[1]": Variable(value=0.0),
"x[2]": Variable(value=1.0),
"x[3]": Variable(value=0.0),
}
),
)
sample.after_lp.instance.to_list = Mock(return_value=[5.0]) # type: ignore
sample.after_lp.variables["x[0]"].to_list = Mock( # type: ignore
return_value=[0.0, 0.0]
)
sample.after_lp.variables["x[2]"].to_list = Mock( # type: ignore
return_value=[1.0, 0.0]
)
sample.after_lp.variables["x[3]"].to_list = Mock( # type: ignore
return_value=[1.0, 1.0]
)
return sample
def test_xy(sample: Sample) -> None:
x_expected = {
"default": [
[5.0, 0.0, 0.0],
[5.0, 1.0, 0.0],
[5.0, 1.0, 1.0],
]
}
y_expected = {
"default": [
[True, False],
[False, True],
[True, False],
]
}
xy = PrimalSolutionComponent().sample_xy(sample)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
assert y_actual == y_expected
def test_xy_old() -> None:
features = Features(
variables={
"x[0]": Variable(
category="default",
user_features=[0.0, 0.0],
),
"x[1]": Variable(
category=None,
),
"x[2]": Variable(
category="default",
user_features=[1.0, 0.0],
),
"x[3]": Variable(
category="default",
user_features=[1.0, 1.0],
),
}
)
instance = Mock(spec=Instance)
instance.features = features
sample = TrainingSample(
solution={
"x[0]": 0.0,
"x[1]": 1.0,
"x[2]": 1.0,
"x[3]": 0.0,
},
lp_solution={
"x[0]": 0.1,
"x[1]": 0.1,
"x[2]": 0.1,
"x[3]": 0.1,
},
)
x_expected = {
"default": [
[0.0, 0.0, 0.1],
[1.0, 0.0, 0.1],
[1.0, 1.0, 0.1],
]
}
y_expected = {
"default": [
[True, False],
[False, True],
[True, False],
]
}
xy = PrimalSolutionComponent().sample_xy_old(instance, sample)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
assert y_actual == y_expected
def test_xy_without_lp_solution() -> None:
features = Features(
variables={
"x[0]": Variable(
category="default",
user_features=[0.0, 0.0],
),
"x[1]": Variable(
category=None,
),
"x[2]": Variable(
category="default",
user_features=[1.0, 0.0],
),
"x[3]": Variable(
category="default",
user_features=[1.0, 1.0],
),
}
)
instance = Mock(spec=Instance)
instance.features = features
sample = TrainingSample(
solution={
"x[0]": 0.0,
"x[1]": 1.0,
"x[2]": 1.0,
"x[3]": 0.0,
},
)
x_expected = {
"default": [
[0.0, 0.0],
[1.0, 0.0],
[1.0, 1.0],
]
}
y_expected = {
"default": [
[True, False],
[False, True],
[True, False],
]
}
xy = PrimalSolutionComponent().sample_xy_old(instance, sample)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
assert y_actual == y_expected
def test_predict() -> None:
clf = Mock(spec=Classifier)
clf.predict_proba = Mock(
return_value=np.array(
[
[0.9, 0.1],
[0.5, 0.5],
[0.1, 0.9],
]
)
)
thr = Mock(spec=Threshold)
thr.predict = Mock(return_value=[0.75, 0.75])
features = Features(
variables={
"x[0]": Variable(
category="default",
user_features=[0.0, 0.0],
),
"x[1]": Variable(
category="default",
user_features=[0.0, 2.0],
),
"x[2]": Variable(
category="default",
user_features=[2.0, 0.0],
),
}
)
instance = Mock(spec=Instance)
instance.features = features
sample = TrainingSample(
lp_solution={
"x[0]": 0.1,
"x[1]": 0.5,
"x[2]": 0.9,
}
)
x, _ = PrimalSolutionComponent().sample_xy_old(instance, sample)
comp = PrimalSolutionComponent()
comp.classifiers = {"default": clf}
comp.thresholds = {"default": thr}
pred = comp.sample_predict(instance, sample)
clf.predict_proba.assert_called_once()
assert_array_equal(x["default"], clf.predict_proba.call_args[0][0])
thr.predict.assert_called_once()
assert_array_equal(x["default"], thr.predict.call_args[0][0])
assert pred == {
"x[0]": 0.0,
"x[1]": None,
"x[2]": 1.0,
}
def test_fit_xy() -> None:
clf = Mock(spec=Classifier)
clf.clone = lambda: Mock(spec=Classifier) # type: ignore
thr = Mock(spec=Threshold)
thr.clone = lambda: Mock(spec=Threshold)
comp = PrimalSolutionComponent(classifier=clf, threshold=thr)
x = {
"type-a": np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]),
"type-b": np.array([[7.0, 8.0, 9.0]]),
}
y = {
"type-a": np.array([[True, False], [False, True]]),
"type-b": np.array([[True, False]]),
}
comp.fit_xy(x, y)
for category in ["type-a", "type-b"]:
assert category in comp.classifiers
assert category in comp.thresholds
clf = comp.classifiers[category] # type: ignore
clf.fit.assert_called_once()
assert_array_equal(x[category], clf.fit.call_args[0][0])
assert_array_equal(y[category], clf.fit.call_args[0][1])
thr = comp.thresholds[category] # type: ignore
thr.fit.assert_called_once()
assert_array_equal(x[category], thr.fit.call_args[0][1])
assert_array_equal(y[category], thr.fit.call_args[0][2])
def test_usage() -> None:
solver = LearningSolver(
components=[
PrimalSolutionComponent(),
]
)
gen = TravelingSalesmanGenerator(n=randint(low=5, high=6))
instance = gen.generate(1)[0]
solver.solve(instance)
solver.fit([instance])
stats = solver.solve(instance)
assert stats["Primal: Free"] == 0
assert stats["Primal: One"] + stats["Primal: Zero"] == 10
assert stats["mip_lower_bound"] == stats["mip_warm_start_value"]
def test_evaluate() -> None:
comp = PrimalSolutionComponent()
comp.sample_predict = lambda _, __: { # type: ignore
"x[0]": 1.0,
"x[1]": 0.0,
"x[2]": 0.0,
"x[3]": None,
"x[4]": 1.0,
}
features: Features = Features(
variables={
"x[0]": Variable(),
"x[1]": Variable(),
"x[2]": Variable(),
"x[3]": Variable(),
"x[4]": Variable(),
}
)
instance = Mock(spec=Instance)
instance.features = features
sample: TrainingSample = TrainingSample(
solution={
"x[0]": 1.0,
"x[1]": 1.0,
"x[2]": 0.0,
"x[3]": 1.0,
"x[4]": 1.0,
}
)
ev = comp.sample_evaluate_old(instance, sample)
assert ev == {
0: classifier_evaluation_dict(tp=1, fp=1, tn=3, fn=0),
1: classifier_evaluation_dict(tp=2, fp=0, tn=1, fn=2),
}