You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/src/python/miplearn/tests/test_solver.py

112 lines
3.7 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import pickle
import tempfile
import pyomo.environ as pe
from miplearn import LearningSolver, BranchPriorityComponent
from miplearn.problems.knapsack import KnapsackInstance
from miplearn.solvers import GurobiSolver, CPLEXSolver
def _get_instance():
return KnapsackInstance(
weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.,
)
def test_internal_solver():
for solver in [GurobiSolver(), CPLEXSolver(presolve=False)]:
instance = _get_instance()
model = instance.to_model()
solver.set_instance(instance, model)
solver.set_warm_start({
"x": {
0: 1.0,
1: 0.0,
2: 1.0,
3: 1.0,
}
})
stats = solver.solve()
assert stats["Lower bound"] == 1183.0
assert stats["Upper bound"] == 1183.0
assert stats["Sense"] == "max"
assert isinstance(stats["Wallclock time"], float)
assert isinstance(stats["Nodes"], int)
solution = solver.get_solution()
assert solution["x"][0] == 1.0
assert solution["x"][1] == 0.0
assert solution["x"][2] == 1.0
assert solution["x"][3] == 1.0
stats = solver.solve_lp()
assert round(stats["Optimal value"], 3) == 1287.923
solution = solver.get_solution()
assert round(solution["x"][0], 3) == 1.000
assert round(solution["x"][1], 3) == 0.923
assert round(solution["x"][2], 3) == 1.000
assert round(solution["x"][3], 3) == 0.000
model.cut = pe.Constraint(expr=model.x[0] <= 0.5)
solver.add_constraint(model.cut)
solver.solve_lp()
assert model.x[0].value == 0.5
def test_learning_solver():
instance = _get_instance()
for mode in ["exact", "heuristic"]:
for internal_solver in ["cplex", "gurobi", GurobiSolver]:
solver = LearningSolver(time_limit=300,
gap_tolerance=1e-3,
threads=1,
solver=internal_solver,
mode=mode)
solver.solve(instance)
assert instance.solution["x"][0] == 1.0
assert instance.solution["x"][1] == 0.0
assert instance.solution["x"][2] == 1.0
assert instance.solution["x"][3] == 1.0
assert instance.lower_bound == 1183.0
assert instance.upper_bound == 1183.0
assert round(instance.lp_solution["x"][0], 3) == 1.000
assert round(instance.lp_solution["x"][1], 3) == 0.923
assert round(instance.lp_solution["x"][2], 3) == 1.000
assert round(instance.lp_solution["x"][3], 3) == 0.000
assert round(instance.lp_value, 3) == 1287.923
solver.fit([instance])
solver.solve(instance)
# Assert solver is picklable
with tempfile.TemporaryFile() as file:
pickle.dump(solver, file)
def test_parallel_solve():
instances = [_get_instance() for _ in range(10)]
solver = LearningSolver()
results = solver.parallel_solve(instances, n_jobs=3)
assert len(results) == 10
for instance in instances:
assert len(instance.solution["x"].keys()) == 4
def test_add_components():
solver = LearningSolver(components=[])
solver.add(BranchPriorityComponent())
solver.add(BranchPriorityComponent())
assert len(solver.components) == 1
assert "BranchPriorityComponent" in solver.components