You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/solvers/pyomo/base.py

274 lines
8.5 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import re
import sys
import logging
import pyomo
from abc import abstractmethod
from io import StringIO
from pyomo import environ as pe
from pyomo.core import Var, Constraint
from .. import RedirectOutput
from ..internal import InternalSolver
from ...instance import Instance
logger = logging.getLogger(__name__)
class BasePyomoSolver(InternalSolver):
"""
Base class for all Pyomo solvers.
"""
def __init__(self):
self.instance = None
self.model = None
self._all_vars = None
self._bin_vars = None
self._is_warm_start_available = False
self._pyomo_solver = None
self._obj_sense = None
self._varname_to_var = {}
self._cname_to_constr = {}
def solve_lp(self, tee=False):
for var in self._bin_vars:
lb, ub = var.bounds
var.setlb(lb)
var.setub(ub)
var.domain = pyomo.core.base.set_types.Reals
self._pyomo_solver.update_var(var)
results = self._pyomo_solver.solve(tee=tee)
for var in self._bin_vars:
var.domain = pyomo.core.base.set_types.Binary
self._pyomo_solver.update_var(var)
return {
"Optimal value": results["Problem"][0]["Lower bound"],
}
def get_solution(self):
solution = {}
for var in self.model.component_objects(Var):
solution[str(var)] = {}
for index in var:
solution[str(var)][index] = var[index].value
return solution
def get_value(self, var_name, index):
var = self._varname_to_var[var_name]
return var[index].value
def get_variables(self):
variables = {}
for var in self.model.component_objects(Var):
variables[str(var)] = []
for index in var:
variables[str(var)] += [index]
return variables
def set_warm_start(self, solution):
self.clear_warm_start()
count_total, count_fixed = 0, 0
for var_name in solution:
var = self._varname_to_var[var_name]
for index in solution[var_name]:
count_total += 1
var[index].value = solution[var_name][index]
if solution[var_name][index] is not None:
count_fixed += 1
if count_fixed > 0:
self._is_warm_start_available = True
logger.info(
"Setting start values for %d variables (out of %d)"
% (count_fixed, count_total)
)
def clear_warm_start(self):
for var in self._all_vars:
if not var.fixed:
var.value = None
self._is_warm_start_available = False
def set_instance(self, instance, model=None):
if model is None:
model = instance.to_model()
assert isinstance(instance, Instance)
assert isinstance(model, pe.ConcreteModel)
self.instance = instance
self.model = model
self._pyomo_solver.set_instance(model)
self._update_obj()
self._update_vars()
self._update_constrs()
def _update_obj(self):
self._obj_sense = "max"
if self._pyomo_solver._objective.sense == pyomo.core.kernel.objective.minimize:
self._obj_sense = "min"
def _update_vars(self):
self._all_vars = []
self._bin_vars = []
self._varname_to_var = {}
for var in self.model.component_objects(Var):
self._varname_to_var[var.name] = var
for idx in var:
self._all_vars += [var[idx]]
if var[idx].domain == pyomo.core.base.set_types.Binary:
self._bin_vars += [var[idx]]
def _update_constrs(self):
self._cname_to_constr = {}
for constr in self.model.component_objects(Constraint):
self._cname_to_constr[constr.name] = constr
def fix(self, solution):
count_total, count_fixed = 0, 0
for varname in solution:
for index in solution[varname]:
var = self._varname_to_var[varname]
count_total += 1
if solution[varname][index] is None:
continue
count_fixed += 1
var[index].fix(solution[varname][index])
self._pyomo_solver.update_var(var[index])
logger.info(
"Fixing values for %d variables (out of %d)"
% (
count_fixed,
count_total,
)
)
def add_constraint(self, constraint):
self._pyomo_solver.add_constraint(constraint)
self._update_constrs()
def solve(self, tee=False, iteration_cb=None, lazy_cb=None):
if lazy_cb is not None:
raise Exception("lazy callback not supported")
total_wallclock_time = 0
streams = [StringIO()]
if tee:
streams += [sys.stdout]
if iteration_cb is None:
iteration_cb = lambda: False
self.instance.found_violated_lazy_constraints = []
self.instance.found_violated_user_cuts = []
while True:
logger.debug("Solving MIP...")
with RedirectOutput(streams):
results = self._pyomo_solver.solve(
tee=True,
warmstart=self._is_warm_start_available,
)
total_wallclock_time += results["Solver"][0]["Wallclock time"]
should_repeat = iteration_cb()
if not should_repeat:
break
log = streams[0].getvalue()
return {
"Lower bound": results["Problem"][0]["Lower bound"],
"Upper bound": results["Problem"][0]["Upper bound"],
"Wallclock time": total_wallclock_time,
"Nodes": self._extract_node_count(log),
"Sense": self._obj_sense,
"Log": log,
"Warm start value": self._extract_warm_start_value(log),
}
@staticmethod
def __extract(log, regexp, default=None):
value = default
for line in log.splitlines():
matches = re.findall(regexp, line)
if len(matches) == 0:
continue
value = matches[0]
return value
def _extract_warm_start_value(self, log):
value = self.__extract(log, self._get_warm_start_regexp())
if value is not None:
value = float(value)
return value
def _extract_node_count(self, log):
return int(self.__extract(log, self._get_node_count_regexp(), default=1))
def set_threads(self, threads):
key = self._get_threads_option_name()
self._pyomo_solver.options[key] = threads
def set_time_limit(self, time_limit):
key = self._get_time_limit_option_name()
self._pyomo_solver.options[key] = time_limit
def set_node_limit(self, node_limit):
key = self._get_node_limit_option_name()
self._pyomo_solver.options[key] = node_limit
def set_gap_tolerance(self, gap_tolerance):
key = self._get_gap_tolerance_option_name()
self._pyomo_solver.options[key] = gap_tolerance
def get_constraint_ids(self):
return list(self._cname_to_constr.keys())
@abstractmethod
def _get_warm_start_regexp(self):
pass
@abstractmethod
def _get_node_count_regexp(self):
pass
@abstractmethod
def _get_threads_option_name(self):
pass
@abstractmethod
def _get_time_limit_option_name(self):
pass
@abstractmethod
def _get_node_limit_option_name(self):
pass
@abstractmethod
def _get_gap_tolerance_option_name(self):
pass
def extract_constraint(self, cid):
raise Exception("Not implemented")
def is_constraint_satisfied(self, cobj):
raise Exception("Not implemented")
def relax(self):
raise Exception("not implemented")
def get_inequality_slacks(self):
raise Exception("not implemented")
def set_constraint_sense(self, cid, sense):
raise Exception("Not implemented")
def get_constraint_sense(self, cid):
raise Exception("Not implemented")
def set_constraint_rhs(self, cid, rhs):
raise Exception("Not implemented")
def is_infeasible(self):
raise Exception("Not implemented")
def get_dual(self, cid):
raise Exception("Not implemented")
def get_sense(self):
raise Exception("Not implemented")