You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
5.6 KiB
170 lines
5.6 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
from copy import deepcopy
|
|
from typing import Optional, List
|
|
|
|
from p_tqdm import p_map
|
|
|
|
from .cplex import CPLEXSolver
|
|
from .gurobi import GurobiSolver
|
|
from .internal import InternalSolver
|
|
from .. import (ObjectiveValueComponent,
|
|
PrimalSolutionComponent,
|
|
LazyConstraintsComponent)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
# Global memory for multiprocessing
|
|
SOLVER = [None] # type: List[Optional[LearningSolver]]
|
|
INSTANCES = [None] # type: List[Optional[dict]]
|
|
|
|
|
|
def _parallel_solve(instance_idx):
|
|
solver = deepcopy(SOLVER[0])
|
|
instance = INSTANCES[0][instance_idx]
|
|
results = solver.solve(instance)
|
|
return {
|
|
"Results": results,
|
|
"Solution": instance.solution,
|
|
"LP solution": instance.lp_solution,
|
|
"LP value": instance.lp_value,
|
|
"Upper bound": instance.upper_bound,
|
|
"Lower bound": instance.lower_bound,
|
|
"Violations": instance.found_violations,
|
|
}
|
|
|
|
|
|
class LearningSolver:
|
|
"""
|
|
Mixed-Integer Linear Programming (MIP) solver that extracts information
|
|
from previous runs, using Machine Learning methods, to accelerate the
|
|
solution of new (yet unseen) instances.
|
|
"""
|
|
|
|
def __init__(self,
|
|
components=None,
|
|
gap_tolerance=None,
|
|
mode="exact",
|
|
solver="gurobi",
|
|
threads=4,
|
|
time_limit=None):
|
|
|
|
self.components = {}
|
|
self.mode = mode
|
|
self.internal_solver = None
|
|
self.internal_solver_factory = solver
|
|
self.threads = threads
|
|
self.time_limit = time_limit
|
|
self.gap_tolerance = gap_tolerance
|
|
self.tee = False
|
|
|
|
if components is not None:
|
|
for comp in components:
|
|
self.add(comp)
|
|
else:
|
|
self.add(ObjectiveValueComponent())
|
|
self.add(PrimalSolutionComponent())
|
|
self.add(LazyConstraintsComponent())
|
|
|
|
assert self.mode in ["exact", "heuristic"]
|
|
for component in self.components.values():
|
|
component.mode = self.mode
|
|
|
|
def _create_internal_solver(self):
|
|
logger.debug("Initializing %s" % self.internal_solver_factory)
|
|
if self.internal_solver_factory == "cplex":
|
|
solver = CPLEXSolver()
|
|
elif self.internal_solver_factory == "gurobi":
|
|
solver = GurobiSolver()
|
|
elif callable(self.internal_solver_factory):
|
|
solver = self.internal_solver_factory()
|
|
assert isinstance(solver, InternalSolver)
|
|
else:
|
|
raise Exception("solver %s not supported" % self.internal_solver_factory)
|
|
solver.set_threads(self.threads)
|
|
if self.time_limit is not None:
|
|
solver.set_time_limit(self.time_limit)
|
|
if self.gap_tolerance is not None:
|
|
solver.set_gap_tolerance(self.gap_tolerance)
|
|
return solver
|
|
|
|
def solve(self,
|
|
instance,
|
|
model=None,
|
|
tee=False,
|
|
relaxation_only=False):
|
|
|
|
if model is None:
|
|
model = instance.to_model()
|
|
|
|
self.tee = tee
|
|
self.internal_solver = self._create_internal_solver()
|
|
self.internal_solver.set_instance(instance, model=model)
|
|
|
|
logger.debug("Solving LP relaxation...")
|
|
results = self.internal_solver.solve_lp(tee=tee)
|
|
instance.lp_solution = self.internal_solver.get_solution()
|
|
instance.lp_value = results["Optimal value"]
|
|
|
|
logger.debug("Running before_solve callbacks...")
|
|
for component in self.components.values():
|
|
component.before_solve(self, instance, model)
|
|
|
|
if relaxation_only:
|
|
return results
|
|
|
|
results = self.internal_solver.solve(tee=tee)
|
|
|
|
# Read MIP solution and bounds
|
|
instance.lower_bound = results["Lower bound"]
|
|
instance.upper_bound = results["Upper bound"]
|
|
instance.solution = self.internal_solver.get_solution()
|
|
|
|
logger.debug("Calling after_solve callbacks...")
|
|
for component in self.components.values():
|
|
component.after_solve(self, instance, model, results)
|
|
|
|
return results
|
|
|
|
def parallel_solve(self,
|
|
instances,
|
|
n_jobs=4,
|
|
label="Solve"):
|
|
|
|
self.internal_solver = None
|
|
SOLVER[0] = self
|
|
INSTANCES[0] = instances
|
|
p_map_results = p_map(_parallel_solve,
|
|
list(range(len(instances))),
|
|
num_cpus=n_jobs,
|
|
desc=label)
|
|
|
|
results = [p["Results"] for p in p_map_results]
|
|
for (idx, r) in enumerate(p_map_results):
|
|
instances[idx].solution = r["Solution"]
|
|
instances[idx].lp_solution = r["LP solution"]
|
|
instances[idx].lp_value = r["LP value"]
|
|
instances[idx].lower_bound = r["Lower bound"]
|
|
instances[idx].upper_bound = r["Upper bound"]
|
|
instances[idx].found_violations = r["Violations"]
|
|
|
|
return results
|
|
|
|
def fit(self, training_instances):
|
|
if len(training_instances) == 0:
|
|
return
|
|
for component in self.components.values():
|
|
component.fit(training_instances)
|
|
|
|
def add(self, component):
|
|
name = component.__class__.__name__
|
|
self.components[name] = component
|
|
|
|
def __getstate__(self):
|
|
self.internal_solver = None
|
|
return self.__dict__
|