You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/features.py

238 lines
9.0 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import collections
import numbers
from dataclasses import dataclass
from math import log, isfinite
from typing import TYPE_CHECKING, Dict, Optional, Set, List, Hashable
from miplearn.types import Solution, VariableName, Category
import numpy as np
if TYPE_CHECKING:
from miplearn.solvers.internal import InternalSolver
from miplearn.instance.base import Instance
@dataclass
class TrainingSample:
lp_log: Optional[str] = None
lp_solution: Optional[Solution] = None
lp_value: Optional[float] = None
lazy_enforced: Optional[Set[Hashable]] = None
lower_bound: Optional[float] = None
mip_log: Optional[str] = None
solution: Optional[Solution] = None
upper_bound: Optional[float] = None
slacks: Optional[Dict[str, float]] = None
user_cuts_enforced: Optional[Set[Hashable]] = None
@dataclass
class InstanceFeatures:
user_features: Optional[List[float]] = None
lazy_constraint_count: int = 0
@dataclass
class Variable:
basis_status: Optional[str] = None
category: Optional[Hashable] = None
lower_bound: Optional[float] = None
obj_coeff: Optional[float] = None
reduced_cost: Optional[float] = None
sa_lb_down: Optional[float] = None
sa_lb_up: Optional[float] = None
sa_obj_down: Optional[float] = None
sa_obj_up: Optional[float] = None
sa_ub_down: Optional[float] = None
sa_ub_up: Optional[float] = None
type: Optional[str] = None
upper_bound: Optional[float] = None
user_features: Optional[List[float]] = None
value: Optional[float] = None
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
alvarez_2017: Optional[List[float]] = None
@dataclass
class Constraint:
basis_status: Optional[str] = None
category: Optional[Hashable] = None
dual_value: Optional[float] = None
lazy: bool = False
lhs: Dict[str, float] = lambda: {} # type: ignore
rhs: float = 0.0
sa_rhs_down: Optional[float] = None
sa_rhs_up: Optional[float] = None
sense: str = "<"
slack: Optional[float] = None
user_features: Optional[List[float]] = None
@dataclass
class Features:
instance: Optional[InstanceFeatures] = None
variables: Optional[Dict[str, Variable]] = None
constraints: Optional[Dict[str, Constraint]] = None
class FeaturesExtractor:
def __init__(
self,
internal_solver: "InternalSolver",
) -> None:
self.solver = internal_solver
def extract(self, instance: "Instance") -> None:
instance.features.variables = self.solver.get_variables()
instance.features.constraints = self.solver.get_constraints()
self._extract_user_features_vars(instance)
self._extract_user_features_constrs(instance)
self._extract_user_features_instance(instance)
self._extract_alvarez_2017(instance)
def _extract_user_features_vars(self, instance: "Instance"):
for (var_name, var) in instance.features.variables.items():
user_features: Optional[List[float]] = None
category: Category = instance.get_variable_category(var_name)
if category is not None:
assert isinstance(category, collections.Hashable), (
f"Variable category must be be hashable. "
f"Found {type(category).__name__} instead for var={var_name}."
)
user_features = instance.get_variable_features(var_name)
if isinstance(user_features, np.ndarray):
user_features = user_features.tolist()
assert isinstance(user_features, list), (
f"Variable features must be a list. "
f"Found {type(user_features).__name__} instead for "
f"var={var_name}."
)
for v in user_features:
assert isinstance(v, numbers.Real), (
f"Variable features must be a list of numbers. "
f"Found {type(v).__name__} instead "
f"for var={var_name}."
)
var.category = category
var.user_features = user_features
def _extract_user_features_constrs(self, instance: "Instance"):
has_static_lazy = instance.has_static_lazy_constraints()
for (cid, constr) in instance.features.constraints.items():
user_features = None
category = instance.get_constraint_category(cid)
if category is not None:
assert isinstance(category, collections.Hashable), (
f"Constraint category must be hashable. "
f"Found {type(category).__name__} instead for cid={cid}.",
)
user_features = instance.get_constraint_features(cid)
if isinstance(user_features, np.ndarray):
user_features = user_features.tolist()
assert isinstance(user_features, list), (
f"Constraint features must be a list. "
f"Found {type(user_features).__name__} instead for cid={cid}."
)
assert isinstance(user_features[0], float), (
f"Constraint features must be a list of floats. "
f"Found {type(user_features[0]).__name__} instead for cid={cid}."
)
if has_static_lazy:
constr.lazy = instance.is_constraint_lazy(cid)
constr.category = category
constr.user_features = user_features
def _extract_user_features_instance(self, instance: "Instance"):
assert instance.features.constraints is not None
user_features = instance.get_instance_features()
if isinstance(user_features, np.ndarray):
user_features = user_features.tolist()
assert isinstance(user_features, list), (
f"Instance features must be a list. "
f"Found {type(user_features).__name__} instead."
)
for v in user_features:
assert isinstance(v, numbers.Real), (
f"Instance features must be a list of numbers. "
f"Found {type(v).__name__} instead."
)
lazy_count = 0
for (cid, cdict) in instance.features.constraints.items():
if cdict.lazy:
lazy_count += 1
instance.features.instance = InstanceFeatures(
user_features=user_features,
lazy_constraint_count=lazy_count,
)
def _extract_alvarez_2017(self, instance: "Instance"):
assert instance.features is not None
assert instance.features.variables is not None
pos_obj_coeff_sum = 0.0
neg_obj_coeff_sum = 0.0
for (varname, var) in instance.features.variables.items():
if var.obj_coeff is not None:
if var.obj_coeff > 0:
pos_obj_coeff_sum += var.obj_coeff
if var.obj_coeff < 0:
neg_obj_coeff_sum += -var.obj_coeff
for (varname, var) in instance.features.variables.items():
assert isinstance(var, Variable)
features = []
if var.obj_coeff is not None:
# Feature 1
features.append(np.sign(var.obj_coeff))
# Feature 2
if pos_obj_coeff_sum > 0:
features.append(abs(var.obj_coeff) / pos_obj_coeff_sum)
else:
features.append(0.0)
# Feature 3
if neg_obj_coeff_sum > 0:
features.append(abs(var.obj_coeff) / neg_obj_coeff_sum)
else:
features.append(0.0)
if var.value is not None:
# Feature 37
features.append(
min(
var.value - np.floor(var.value),
np.ceil(var.value) - var.value,
)
)
if var.sa_obj_up is not None:
assert var.sa_obj_down is not None
csign = np.sign(var.obj_coeff)
# Features 44 and 46
features.append(np.sign(var.sa_obj_up))
features.append(np.sign(var.sa_obj_down))
# Feature 47
f47 = log((var.obj_coeff - var.sa_obj_down) / csign)
if isfinite(f47):
features.append(f47)
else:
features.append(0.0)
# Feature 48
f48 = log((var.sa_obj_up - var.obj_coeff) / csign)
if isfinite(f48):
features.append(f48)
else:
features.append(0.0)
var.alvarez_2017 = features