You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/test_features.py

186 lines
6.1 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from miplearn.features import (
FeaturesExtractor,
VariableFeatures,
ConstraintFeatures,
Sample,
)
from miplearn.solvers.gurobi import GurobiSolver
from miplearn.solvers.tests import assert_equals
inf = float("inf")
def test_knapsack() -> None:
solver = GurobiSolver()
instance = solver.build_test_instance_knapsack()
model = instance.to_model()
solver.set_instance(instance, model)
extractor = FeaturesExtractor()
sample = Sample()
# after-load
# -------------------------------------------------------
extractor.extract_after_load_features(instance, solver, sample)
assert_equals(sample.get("var_names"), ["x[0]", "x[1]", "x[2]", "x[3]", "z"])
assert_equals(sample.get("var_lower_bounds"), [0.0, 0.0, 0.0, 0.0, 0.0])
assert_equals(sample.get("var_obj_coeffs"), [505.0, 352.0, 458.0, 220.0, 0.0])
assert_equals(sample.get("var_types"), ["B", "B", "B", "B", "C"])
assert_equals(sample.get("var_upper_bounds"), [1.0, 1.0, 1.0, 1.0, 67.0])
assert_equals(
sample.get("var_categories"),
["default", "default", "default", "default", None],
)
assert_equals(
sample.get("var_features_user"),
[[23.0, 505.0], [26.0, 352.0], [20.0, 458.0], [18.0, 220.0], None],
)
assert_equals(
sample.get("var_features_AlvLouWeh2017"),
[
[1.0, 0.32899, 0.0],
[1.0, 0.229316, 0.0],
[1.0, 0.298371, 0.0],
[1.0, 0.143322, 0.0],
[0.0, 0.0, 0.0],
],
)
assert sample.get("var_features") is not None
assert_equals(sample.get("constr_names"), ["eq_capacity"])
assert_equals(
sample.get("constr_lhs"),
[
[
("x[0]", 23.0),
("x[1]", 26.0),
("x[2]", 20.0),
("x[3]", 18.0),
("z", -1.0),
],
],
)
assert_equals(sample.get("constr_rhs"), [0.0])
assert_equals(sample.get("constr_senses"), ["="])
assert_equals(sample.get("constr_features_user"), [None])
assert_equals(sample.get("constr_categories"), ["eq_capacity"])
assert_equals(sample.get("constr_lazy"), [False])
assert_equals(sample.get("instance_features_user"), [67.0, 21.75])
assert_equals(sample.get("static_lazy_count"), 0)
# after-lp
# -------------------------------------------------------
solver.solve_lp()
extractor.extract_after_lp_features(solver, sample)
assert_equals(
sample.get("lp_var_basis_status"),
["U", "B", "U", "L", "U"],
)
assert_equals(
sample.get("lp_var_reduced_costs"),
[193.615385, 0.0, 187.230769, -23.692308, 13.538462],
)
assert_equals(
sample.get("lp_var_sa_lb_down"),
[-inf, -inf, -inf, -0.111111, -inf],
)
assert_equals(
sample.get("lp_var_sa_lb_up"),
[1.0, 0.923077, 1.0, 1.0, 67.0],
)
assert_equals(
sample.get("lp_var_sa_obj_down"),
[311.384615, 317.777778, 270.769231, -inf, -13.538462],
)
assert_equals(
sample.get("lp_var_sa_obj_up"),
[inf, 570.869565, inf, 243.692308, inf],
)
assert_equals(sample.get("lp_var_sa_ub_down"), [0.913043, 0.923077, 0.9, 0.0, 43.0])
assert_equals(sample.get("lp_var_sa_ub_up"), [2.043478, inf, 2.2, inf, 69.0])
assert_equals(sample.get("lp_var_values"), [1.0, 0.923077, 1.0, 0.0, 67.0])
assert_equals(
sample.get("lp_var_features_AlvLouWeh2017"),
[
[1.0, 0.32899, 0.0, 0.0, 1.0, 1.0, 5.265874, 46.051702],
[1.0, 0.229316, 0.0, 0.076923, 1.0, 1.0, 3.532875, 5.388476],
[1.0, 0.298371, 0.0, 0.0, 1.0, 1.0, 5.232342, 46.051702],
[1.0, 0.143322, 0.0, 0.0, 1.0, -1.0, 46.051702, 3.16515],
[0.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0],
],
)
assert sample.get("lp_var_features") is not None
assert_equals(sample.get("lp_constr_basis_status"), ["N"])
assert_equals(sample.get("lp_constr_dual_values"), [13.538462])
assert_equals(sample.get("lp_constr_sa_rhs_down"), [-24.0])
assert_equals(sample.get("lp_constr_sa_rhs_up"), [2.0])
assert_equals(sample.get("lp_constr_slacks"), [0.0])
# after-mip
# -------------------------------------------------------
solver.solve()
extractor.extract_after_mip_features(solver, sample)
assert_equals(sample.get("mip_var_values"), [1.0, 0.0, 1.0, 1.0, 61.0])
assert_equals(sample.get("mip_constr_slacks"), [0.0])
def test_constraint_getindex() -> None:
cf = ConstraintFeatures(
names=["c1", "c2", "c3"],
rhs=[1.0, 2.0, 3.0],
senses=["=", "<", ">"],
lhs=[
[
("x1", 1.0),
("x2", 1.0),
],
[
("x2", 2.0),
("x3", 2.0),
],
[
("x3", 3.0),
("x4", 3.0),
],
],
)
assert_equals(
cf[[True, False, True]],
ConstraintFeatures(
names=["c1", "c3"],
rhs=[1.0, 3.0],
senses=["=", ">"],
lhs=[
[
("x1", 1.0),
("x2", 1.0),
],
[
("x3", 3.0),
("x4", 3.0),
],
],
),
)
def test_assert_equals() -> None:
assert_equals("hello", "hello")
assert_equals([1.0, 2.0], [1.0, 2.0])
assert_equals(np.array([1.0, 2.0]), np.array([1.0, 2.0]))
assert_equals(
np.array([[1.0, 2.0], [3.0, 4.0]]),
np.array([[1.0, 2.0], [3.0, 4.0]]),
)
assert_equals(
VariableFeatures(values=np.array([1.0, 2.0])), # type: ignore
VariableFeatures(values=np.array([1.0, 2.0])), # type: ignore
)
assert_equals(np.array([True, True]), [True, True])
assert_equals((1.0,), (1.0,))
assert_equals({"x": 10}, {"x": 10})