You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/components/test_dynamic_lazy.py

193 lines
6.0 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import List, cast
from unittest.mock import Mock
import numpy as np
import pytest
from miplearn.classifiers import Classifier
from miplearn.classifiers.threshold import MinProbabilityThreshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.dynamic_lazy import DynamicLazyConstraintsComponent
from miplearn.features.sample import Sample, MemorySample
from miplearn.instance.base import Instance
from miplearn.solvers.tests import assert_equals
E = 0.1
@pytest.fixture
def training_instances() -> List[Instance]:
instances = [cast(Instance, Mock(spec=Instance)) for _ in range(2)]
samples_0 = [
MemorySample(
{
"lazy_enforced": {"c1", "c2"},
"static_instance_features": [5.0],
},
),
MemorySample(
{
"lazy_enforced": {"c2", "c3"},
"static_instance_features": [5.0],
},
),
]
instances[0].get_samples = Mock(return_value=samples_0) # type: ignore
instances[0].get_constraint_categories = Mock( # type: ignore
return_value={
"c1": "type-a",
"c2": "type-a",
"c3": "type-b",
"c4": "type-b",
}
)
instances[0].get_constraint_features = Mock( # type: ignore
return_value={
"c1": [1.0, 2.0, 3.0],
"c2": [4.0, 5.0, 6.0],
"c3": [1.0, 2.0],
"c4": [3.0, 4.0],
}
)
samples_1 = [
MemorySample(
{
"lazy_enforced": {"c3", "c4"},
"static_instance_features": [8.0],
},
)
]
instances[1].get_samples = Mock(return_value=samples_1) # type: ignore
instances[1].get_constraint_categories = Mock( # type: ignore
return_value={
"c1": None,
"c2": "type-a",
"c3": "type-b",
"c4": "type-b",
}
)
instances[1].get_constraint_features = Mock( # type: ignore
return_value={
"c2": [7.0, 8.0, 9.0],
"c3": [5.0, 6.0],
"c4": [7.0, 8.0],
}
)
return instances
def test_sample_xy(training_instances: List[Instance]) -> None:
comp = DynamicLazyConstraintsComponent()
comp.pre_fit([{"c1", "c2", "c3", "c4"}])
x_expected = {
"type-a": [[5.0, 1.0, 2.0, 3.0], [5.0, 4.0, 5.0, 6.0]],
"type-b": [[5.0, 1.0, 2.0], [5.0, 3.0, 4.0]],
}
y_expected = {
"type-a": [[False, True], [False, True]],
"type-b": [[True, False], [True, False]],
}
x_actual, y_actual = comp.sample_xy(
training_instances[0],
training_instances[0].get_samples()[0],
)
assert_equals(x_actual, x_expected)
assert_equals(y_actual, y_expected)
# def test_fit(training_instances: List[Instance]) -> None:
# clf = Mock(spec=Classifier)
# clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
# comp = DynamicLazyConstraintsComponent(classifier=clf)
# comp.fit(training_instances)
# assert clf.clone.call_count == 2
#
# assert "type-a" in comp.classifiers
# clf_a = comp.classifiers["type-a"]
# assert clf_a.fit.call_count == 1 # type: ignore
# assert_array_equal(
# clf_a.fit.call_args[0][0], # type: ignore
# np.array(
# [
# [5.0, 1.0, 2.0, 3.0],
# [5.0, 4.0, 5.0, 6.0],
# [5.0, 1.0, 2.0, 3.0],
# [5.0, 4.0, 5.0, 6.0],
# [8.0, 7.0, 8.0, 9.0],
# ]
# ),
# )
# assert_array_equal(
# clf_a.fit.call_args[0][1], # type: ignore
# np.array(
# [
# [False, True],
# [False, True],
# [True, False],
# [False, True],
# [True, False],
# ]
# ),
# )
#
# assert "type-b" in comp.classifiers
# clf_b = comp.classifiers["type-b"]
# assert clf_b.fit.call_count == 1 # type: ignore
# assert_array_equal(
# clf_b.fit.call_args[0][0], # type: ignore
# np.array(
# [
# [5.0, 1.0, 2.0],
# [5.0, 3.0, 4.0],
# [5.0, 1.0, 2.0],
# [5.0, 3.0, 4.0],
# [8.0, 5.0, 6.0],
# [8.0, 7.0, 8.0],
# ]
# ),
# )
# assert_array_equal(
# clf_b.fit.call_args[0][1], # type: ignore
# np.array(
# [
# [True, False],
# [True, False],
# [False, True],
# [True, False],
# [False, True],
# [False, True],
# ]
# ),
# )
def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
comp = DynamicLazyConstraintsComponent()
comp.known_cids.extend(["c1", "c2", "c3", "c4"])
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
comp.classifiers["type-a"] = Mock(spec=Classifier)
comp.classifiers["type-b"] = Mock(spec=Classifier)
comp.classifiers["type-a"].predict_proba = Mock( # type: ignore
side_effect=lambda _: np.array([[0.1, 0.9], [0.8, 0.2]])
)
comp.classifiers["type-b"].predict_proba = Mock( # type: ignore
side_effect=lambda _: np.array([[0.9, 0.1], [0.1, 0.9]])
)
pred = comp.sample_predict(
training_instances[0],
training_instances[0].get_samples()[0],
)
assert pred == ["c1", "c4"]
ev = comp.sample_evaluate(
training_instances[0],
training_instances[0].get_samples()[0],
)
assert ev == {
"type-a": classifier_evaluation_dict(tp=1, fp=0, tn=0, fn=1),
"type-b": classifier_evaluation_dict(tp=0, fp=1, tn=1, fn=0),
}