You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/solvers.py

299 lines
11 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from . import WarmStartComponent, BranchPriorityComponent, ObjectiveValueComponent
import pyomo.environ as pe
from pyomo.core import Var
from copy import deepcopy
import pickle
from scipy.stats import randint
from p_tqdm import p_map
import logging
logger = logging.getLogger(__name__)
class InternalSolver():
def __init__():
pass
def solve_lp(self, model, tee=False):
from pyomo.core.base.set_types import Reals
original_domain = {}
for var in model.component_data_objects(Var):
original_domain[str(var)] = var.domain
lb, ub = var.bounds
var.setlb(lb)
var.setub(ub)
var.domain = Reals
self.solver.set_instance(model)
results = self.solver.solve(tee=True)
for var in model.component_data_objects(Var):
var.domain = original_domain[str(var)]
return {
"Optimal value": results["Problem"][0]["Lower bound"],
}
def clear_values(self, model):
for var in model.component_objects(Var):
for index in var:
var[index].value = None
def get_solution(self, model):
solution = {}
for var in model.component_objects(Var):
solution[str(var)] = {}
for index in var:
solution[str(var)][index] = var[index].value
return solution
class GurobiSolver(InternalSolver):
def __init__(self):
self.solver = pe.SolverFactory('gurobi_persistent')
#self.solver.options["OutputFlag"] = 0
self.solver.options["Seed"] = randint(low=0, high=1000).rvs()
def set_threads(self, threads):
self.solver.options["Threads"] = threads
def set_time_limit(self, time_limit):
self.solver.options["TimeLimit"] = time_limit
def set_gap_tolerance(self, gap_tolerance):
self.solver.options["MIPGap"] = gap_tolerance
def solve(self, model, tee=False, warmstart=False):
self.solver.set_instance(model)
results = self.solver.solve(tee=tee, warmstart=warmstart)
return {
"Lower bound": results["Problem"][0]["Lower bound"],
"Upper bound": results["Problem"][0]["Upper bound"],
"Wallclock time": results["Solver"][0]["Wallclock time"],
"Nodes": self.solver._solver_model.getAttr("NodeCount"),
}
def _load_vars(self):
var_map = self._pyomo_var_to_solver_var_map
ref_vars = self._referenced_variables
vars_to_load = var_map.keys()
gurobi_vars_to_load = [var_map[pyomo_var] for pyomo_var in vars_to_load]
vals = self._solver_model.getAttr("X", gurobi_vars_to_load)
for var, val in zip(vars_to_load, vals):
if ref_vars[var] > 0:
var.stale = False
var.value = val
class CPLEXSolver(InternalSolver):
def __init__(self):
import cplex
self.solver = pe.SolverFactory('cplex_persistent')
self.solver.options["randomseed"] = randint(low=0, high=1000).rvs()
def set_threads(self, threads):
self.solver.options["threads"] = threads
def set_time_limit(self, time_limit):
self.solver.options["timelimit"] = time_limit
def set_gap_tolerance(self, gap_tolerance):
self.solver.options["mip_tolerances_mipgap"] = gap_tolerance
def solve(self, model, tee=False, warmstart=False):
self.solver.set_instance(model)
results = self.solver.solve(tee=tee, warmstart=warmstart)
return {
"Lower bound": results["Problem"][0]["Lower bound"],
"Upper bound": results["Problem"][0]["Upper bound"],
"Wallclock time": results["Solver"][0]["Wallclock time"],
"Nodes": 1,
}
def solve_lp(self, model, tee=False):
import cplex
self.solver.set_instance(model)
lp = self.solver._solver_model
var_types = lp.variables.get_types()
n_vars = len(var_types)
lp.set_problem_type(cplex.Cplex.problem_type.LP)
results = self.solver.solve(tee=tee)
lp.variables.set_types(zip(range(n_vars), var_types))
return {
"Optimal value": results["Problem"][0]["Lower bound"],
}
class LearningSolver:
"""
Mixed-Integer Linear Programming (MIP) solver that extracts information from previous runs,
using Machine Learning methods, to accelerate the solution of new (yet unseen) instances.
"""
def __init__(self,
components=None,
gap_tolerance=None,
mode="exact",
solver="gurobi",
threads=4,
time_limit=None,
):
self.is_persistent = None
self.components = components
self.mode = mode
self.internal_solver = None
self.internal_solver_factory = solver
self.threads = threads
self.time_limit = time_limit
self.gap_tolerance = gap_tolerance
self.tee = False
self.training_instances = []
if self.components is not None:
assert isinstance(self.components, dict)
else:
self.components = {
"obj-val": ObjectiveValueComponent(),
#"warm-start": WarmStartComponent(),
}
assert self.mode in ["exact", "heuristic"]
for component in self.components.values():
component.mode = self.mode
def _create_internal_solver(self):
if self.internal_solver_factory == "cplex":
solver = CPLEXSolver()
elif self.internal_solver_factory == "gurobi":
solver = GurobiSolver()
else:
raise Exception("solver %s not supported" % solver_factory)
solver.set_threads(self.threads)
if self.time_limit is not None:
solver.set_time_limit(self.time_limit)
if self.gap_tolerance is not None:
solver.set_gap_tolerance(self.gap_tolerance)
return solver
def solve(self,
instance,
model=None,
tee=False,
relaxation_only=False,
):
if model is None:
model = instance.to_model()
self.tee = tee
self.internal_solver = self._create_internal_solver()
# Solve LP relaxation
results = self.internal_solver.solve_lp(model, tee=tee)
instance.lp_solution = self.internal_solver.get_solution(model)
instance.lp_value = results["Optimal value"]
# Invoke before_solve callbacks
for component in self.components.values():
component.before_solve(self, instance, model)
if relaxation_only:
return results
# Check if warm start is available
is_warm_start_available = False
if "warm-start" in self.components.keys():
if self.components["warm-start"].is_warm_start_available:
is_warm_start_available = True
# Solver original MIP
self.internal_solver.clear_values(model)
results = self.internal_solver.solve(model,
tee=tee,
warmstart=is_warm_start_available)
# Read MIP solution and bounds
instance.lower_bound = results["Lower bound"]
instance.upper_bound = results["Upper bound"]
instance.solution = self.internal_solver.get_solution(model)
# Invoke after_solve callbacks
for component in self.components.values():
component.after_solve(self, instance, model)
# Store instance for future training
self.training_instances += [instance]
return results
def parallel_solve(self,
instances,
n_jobs=4,
label="Solve",
collect_training_data=True,
):
self.internal_solver = None
def _process(instance):
solver = deepcopy(self)
results = solver.solve(instance)
solver.internal_solver = None
if not collect_training_data:
solver.components = {}
return {
"Solver": solver,
"Results": results,
"Solution": instance.solution,
"LP solution": instance.lp_solution,
"LP value": instance.lp_value,
"Upper bound": instance.upper_bound,
"Lower bound": instance.lower_bound,
}
p_map_results = p_map(_process, instances, num_cpus=n_jobs, desc=label)
subsolvers = [p["Solver"] for p in p_map_results]
results = [p["Results"] for p in p_map_results]
for (idx, r) in enumerate(p_map_results):
instances[idx].solution = r["Solution"]
instances[idx].lp_solution = r["LP solution"]
instances[idx].lp_value = r["LP value"]
instances[idx].lower_bound = r["Lower bound"]
instances[idx].upper_bound = r["Upper bound"]
for (name, component) in self.components.items():
subcomponents = [subsolver.components[name]
for subsolver in subsolvers
if name in subsolver.components.keys()]
self.components[name].merge(subcomponents)
return results
def fit(self, training_instances=None):
if training_instances is None:
training_instances = self.training_instances
if len(training_instances) == 0:
return
for component in self.components.values():
component.fit(training_instances)
def save_state(self, filename):
with open(filename, "wb") as file:
pickle.dump({
"version": 2,
"components": self.components,
}, file)
def load_state(self, filename):
with open(filename, "rb") as file:
data = pickle.load(file)
assert data["version"] == 2
for (component_name, component) in data["components"].items():
if component_name not in self.components.keys():
continue
else:
self.components[component_name].merge([component])